An active learning approach for the interactive and guided segmentation of tomography data

被引:2
|
作者
Kazimi, Bashir [1 ]
Heuser, Philipp [2 ]
Schluenzen, Frank
Cwieka, Hanna
Krueger, Diana
Zeller-Plumhoff, Berit [1 ]
Wieland, Florian [1 ]
Hammel, Joerg U. [1 ]
Beckmann, Felix [1 ]
Moosmann, Julian [1 ]
机构
[1] Helmholtz Zentrum Hereon, Max Planck Str 1, D-21502 Geesthacht, Germany
[2] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
来源
关键词
tomography; synchrotron radiation; deep learning; active learning; segmentation;
D O I
10.1117/12.2637973
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Helmholtz-Zentrum Hereon is operating several tomography end stations at the beamlines P05 and P07 of the synchrotron radiation facility PETRA III at DESY in Hamburg, Germany. Attenuation and phase contrast imaging techniques are provided as well as sample environments for in situ/operando/vivo experiments for applications in biology, medicine, materials science, etc. Very large and diverse data sets with varying spatiotemporal resolution, noise levels and artifacts are acquired which are challenging to process and analyze. Here we report on an active learning approach for the semantic segmentation of tomography data using a guided and interactive framework, and evaluate different acquistion functions for the selection of images to be annotated in the iterative process.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Enhancing Active Learning Computed Tomography Image Segmentation with Domain Knowledge
    Ayerdi, Borja
    Maiora, Josu
    Grana, Manuel
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 491 - 499
  • [22] Coarse Mask Guided Interactive Object Segmentation
    Li, Jing
    Fan, Junsong
    Wang, Yuxi
    Yang, Yuran
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5808 - 5822
  • [23] CNAViz: An interactive webtool for user-guided segmentation of tumor DNA sequencing data
    Lalani, Zubair
    Chu, Gillian
    Hsu, Silas
    Kagawa, Shaw
    Xiang, Michael
    Zaccaria, Simone
    El-Kebir, Mohammed
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
  • [24] Interactive Machine Learning for Data Exfiltration Detection: Active Learning with Human Expertise
    Chung, Mu-Huan
    Chignell, Mark
    Wang, Lu
    Jovicic, Alexandra
    Raman, Abhay
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 280 - 287
  • [25] ACTIVE LEARNING GUIDED INTERACTIONS FOR CONSISTENT IMAGE SEGMENTATION WITH REDUCED USER INTERACTIONS
    Veeraraghavan, Harini
    Miller, James V.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1645 - 1648
  • [26] A robust machine learning approach to SDG data segmentation
    Kassim S. Mwitondi
    Isaac Munyakazi
    Barnabas N. Gatsheni
    Journal of Big Data, 7
  • [27] A robust machine learning approach to SDG data segmentation
    Mwitondi, Kassim S.
    Munyakazi, Isaac
    Gatsheni, Barnabas N.
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [28] Morphology-guided deep learning framework for segmentation of pancreas in computed tomography images
    Qureshi, Touseef Ahmad
    Lynch, Cody
    Azab, Linda
    Xie, Yibin
    Gaddam, Srinavas
    Pandol, Stepehen Jacob
    Li, Debiao
    JOURNAL OF MEDICAL IMAGING, 2022, 9 (02) : 24002
  • [29] Interactive Segmentation via Deep Learning and B-Spline Explicit Active Surfaces
    Williams, Helena
    Pedrosa, Joao
    Cattani, Laura
    Housmans, Susanne
    Vercauteren, Tom
    Deprest, Jan
    D'hooge, Jan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I, 2021, 12901 : 315 - 325
  • [30] 3D Interactive Segmentation With Semi-Implicit Representation and Active Learning
    Deng, Jingjing
    Xie, Xianghua
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9402 - 9417