Stacking Model for Photovoltaic-Power-Generation Prediction

被引:30
|
作者
Zhang, Hongchao [1 ]
Zhu, Tengteng [2 ]
机构
[1] Sun Yat Sen Univ, Sch Business, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Foreign Studies, Int Innovat Res Ctr, Guangzhou 510006, Peoples R China
关键词
photovoltaic power generation; stacking model; ensemble-learning algorithm; HYBRID METHOD; SOLAR; OUTPUT;
D O I
10.3390/su14095669
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite the clean and renewable advantages of solar energy, the instability of photovoltaic power generation limits its wide applicability. In order to ensure stable power-grid operations and the safe dispatching of the power grid, it is necessary to develop a model that can accurately predict the photovoltaic power generation. As a widely used prediction method, the stacking model has been applied in many fields. However, few studies have used stacking models to predict photovoltaic power generation. In the research, we develop four different stacking models that are based on extreme gradient boosting, random forest, light gradient boosting, and gradient boosting decision tree to predict photovoltaic power generation, by using two datasets. The results show that the prediction accuracy of the stacking model is higher than that of the single ensemble-learning model, and that the prediction accuracy of the Stacking-GBDT model is higher than the other stacking models. The stacking model that is proposed in this research provides a reference for the accurate prediction of photovoltaic power generation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] MULTI-MODEL FUSION PHOTOVOLTAIC POWER GENERATION PREDICTION METHOD BASED ON REINFORCEMENT LEARNING
    Wang J.
    Fu J.
    Chen B.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 382 - 388
  • [32] Photovoltaic power generation prediction and optimization configuration model based on GPR and improved PSO algorithm
    Zhang Z.
    Duan Z.
    Zhang L.
    EAI Endorsed Transactions on Energy Web, 2024, 11 : 1 - 13
  • [33] Prediction and classification of solar photovoltaic power generation using extreme gradient boosting regression model
    Rinesh, S.
    Deepa, S.
    Nandan, R. T.
    Sachin, R. S.
    Thamil, S., V
    Akash, R.
    Arun, M.
    Prajitha, C.
    Kumar, A. P. Senthil
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 2420 - 2430
  • [34] Research on distributed photovoltaic power generation prediction based on grey model for energy Internet of city
    Li, Hao
    Liu, Chang
    Li, Wen
    Liu, Chao
    Li, Bin
    2019 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2020, 440
  • [35] An operating method using prediction of photovoltaic power for a photovoltaic-diesel hybrid power generation system
    Yamamoto, S
    Sumi, K
    Nishikawa, E
    Hashimot, T
    ELECTRICAL ENGINEERING IN JAPAN, 2005, 151 (03) : 8 - 18
  • [36] Design of Energy Storage Photovoltaic Power Generation Device and Neural Network Method for Photovoltaic Power Prediction
    Zhang, Yaru
    Li, Jinyu
    Yang, Jingxuan
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (07) : 1152 - 1160
  • [38] Multitasking recurrent neural network for photovoltaic power generation prediction
    Song, Hui
    Al Khafaf, Nameer
    Kamoona, Ammar
    Sajjadi, Samaneh Sadat
    Amani, Ali Moradi
    Jalili, Mahdi
    Yu, Xinghuo
    McTaggart, Peter
    ENERGY REPORTS, 2023, 9 : 369 - 376
  • [39] Multitasking recurrent neural network for photovoltaic power generation prediction
    Song, Hui
    Al Khafaf, Nameer
    Kamoona, Ammar
    Sajjadi, Samaneh Sadat
    Amani, Ali Moradi
    Jalili, Mahdi
    Yu, Xinghuo
    McTaggart, Peter
    ENERGY REPORTS, 2023, 9 : 369 - 376
  • [40] Distributed Generation with Photovoltaic Power Prediction in Remote Microgrid Application
    Kene, Raymond O.
    Olwal, Thomas
    Chowdhury, Daniel S. P.
    2019 IEEE PES/IAS POWERAFRICA, 2019, : 711 - 716