Vapor transport deposition of large-area polycrystalline CdTe for radiation image sensor application

被引:6
|
作者
Yang, Keedong [1 ]
Cha, Bokyung [1 ]
Heo, Duchang [1 ]
Jeon, Sungchae [1 ]
机构
[1] Korea Electrotechnol Res Inst, Ansan 426170, Gyeonggi Do, South Korea
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 11, NO 7-8 | 2014年 / 11卷 / 7-8期
关键词
CdTe; vapor transport deposition; X-ray detector; X-RAY TARGETS; THICK-FILMS; SENSITIVITY; TUBE;
D O I
10.1002/pssc.201300600
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vapor transport deposition (VTD) process delivers saturated vapor to substrate, resulting in high-throughput and scalable process. In addition, VTD can maintain lower substrate temperature than close-spaced sublimation (CSS). The motivation of this work is to adopt several advantages of VTD for radiation image sensor application. Polycrystalline CdTe films were obtained on 300 mmx300 mm indium tin oxide (ITO) coated glass. The polycrystalline CdTe film has columnar structure with average grain size of 3 mu m similar to 9 mu m, which can be controlled by changing the substrate temperature. In order to analyze electrical and X-ray characteristics, ITO-CdTe-Al sandwich structured device was fabricated. Effective resistivity of the polycrystalline CdTe film was similar to 1.4x109Ocm. The device was operated under hole-collection mode. The responsivity and the mu t product estimated to be 6.8 mu C/cm2R and 5.5x107 cm2/V. The VTD can be a process of choice for monolithic integration of CdTe thick film for radiation image sensor and CMOS/TFT circuitry. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
引用
收藏
页码:1341 / 1344
页数:4
相关论文
共 50 条
  • [21] Modeling of chemical vapor deposition of large-area silicon carbide thin film
    Wang, Rong
    Ma, Ronghui
    Zupan, Marc
    CRYSTAL GROWTH & DESIGN, 2006, 6 (11) : 2592 - 2597
  • [22] Noise Analysis of Image Sensor Arrays for Large-Area Biomedical Imaging
    Lai, Jackson
    Striakhilev, Denis
    Vygranenko, Yuri
    Heiler, Gregory
    Nathan, Arokia
    Tredwell, Timothy
    AMORPHOUS AND POLYCRYSTALLINE THIN-FILM SILICON SCIENCE AND TECHNOLOGY-2008, 2008, 1066 : 413 - +
  • [23] LARGE-AREA DEPOSITION OF GAAS BY MOCVD
    DALY, JT
    ROBERTS, CB
    III-V HETEROSTRUCTURES FOR ELECTRONIC / PHOTONIC DEVICES, 1989, 145 : 239 - 244
  • [24] Large-area graphene for sensor applications
    Snow, Eric S.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS II, 2010, 7679
  • [25] Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition
    Garlow, Joseph A.
    Barrett, Lawrence K.
    Wu, Lijun
    Kisslinger, Kim
    Zhu, Yimei
    Pulecio, Javier F.
    SCIENTIFIC REPORTS, 2016, 6
  • [26] Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition
    Lee, Yi-Hsien
    Zhang, Xin-Quan
    Zhang, Wenjing
    Chang, Mu-Tung
    Lin, Cheng-Te
    Chang, Kai-Di
    Yu, Ya-Chu
    Wang, Jacob Tse-Wei
    Chang, Chia-Seng
    Li, Lain-Jong
    Lin, Tsung-Wu
    ADVANCED MATERIALS, 2012, 24 (17) : 2320 - 2325
  • [27] Large-area bilayer graphene synthesis in the hot filament chemical vapor deposition reactor
    Mendoza, Frank
    Limbu, Tej B.
    Weiner, Brad R.
    Morell, Gerardo
    DIAMOND AND RELATED MATERIALS, 2015, 51 : 34 - 38
  • [28] Chemical Vapor Deposition Synthesis and Raman Spectroscopic Characterization of Large-Area Graphene Sheets
    Liao, Chun-Da
    Lu, Yi-Ying
    Tamalampudi, Srinivasa Reddy
    Cheng, Hung-Chieh
    Chen, Yit-Tsong
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (39): : 9454 - 9461
  • [29] Convection-assisted chemical vapor deposition (CoCVD) of silicon on large-area substrates
    Kunz, T.
    Burkert, I.
    Auer, R.
    Lovtsus, A. A.
    Talalaev, R. A.
    Makarov, Yu. N.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (06) : 1112 - 1117
  • [30] Synchronous chemical vapor deposition of large-area hybrid graphene–carbon nanotube architectures
    Maziar Ghazinejad
    Shirui Guo
    Wei Wang
    Mihrimah Ozkan
    Cengiz S. Ozkan
    Journal of Materials Research, 2013, 28 : 958 - 968