A language model using variable length tokens for open-vocabulary Hangul text recognition

被引:1
|
作者
Ryu, SH [1 ]
Kim, JH [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Div Comp Sci 373 1, Taejon 305701, South Korea
关键词
language model; character recognition; hangul recognition; open-vocabulary; word recognition;
D O I
10.1016/j.patcog.2003.12.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel language model for Hangul text recognition. Without relying on prior linguistic knowledge in training, the proposed model learns variable length Hangul character sequences, which comprise the elementary tokens of Korean language, and their probabilities from statistics of a raw text corpus. Experiments in handwritten Hangul recognition shows that the proposed language model is effective in postprocessing of recognition results. (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1549 / 1552
页数:4
相关论文
共 50 条
  • [41] Language Embedded 3D Gaussians for Open-Vocabulary Scene Understanding
    Shi, Jin-Chuan
    Wang, Miao
    Duan, Hao-Bin
    Guan, Shao-Hua
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 5333 - 5343
  • [42] Learning the lexicon from raw texts for open-vocabulary Korean word recognition
    Ryu, S
    Kim, JH
    SEVENTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2003, : 202 - 206
  • [43] Active Open-Vocabulary Recognition: Let Intelligent Moving Mitigate CLIP Limitations
    Fan, Lei
    Zhou, Jianxiong
    Xing, Xiaoying
    Wu, Ying
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 16394 - 16403
  • [44] Closed- and Open-Vocabulary Approaches to Text Analysis: A Review, Quantitative Comparison, and Recommendations
    Eichstaedt, Johannes C.
    Kern, Margaret L.
    Yaden, David B.
    Schwartz, H. A.
    Giorgi, Salvatore
    Park, Gregory
    Hagan, Courtney A.
    Tobolsky, Victoria A.
    Smith, Laura K.
    Buffone, Anneke
    Iwry, Jonathan
    Seligman, Martin E. P.
    Ungar, Lyle H.
    PSYCHOLOGICAL METHODS, 2021, 26 (04) : 398 - 427
  • [45] EdaDet: Open-Vocabulary Object Detection Using Early Dense Alignment
    Shi, Cheng
    Yang, Sibei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 15678 - 15688
  • [46] OPEN-VOCABULARY SKELETON ACTION RECOGNITION WITH DIFFUSION GRAPH CONVOLUTIONAL NETWORK AND PRE-TRAINED VISION-LANGUAGE MODELS
    Wei, Chao
    Deng, Zhidong
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3195 - 3199
  • [47] GaussianGrasper: 3D Language Gaussian Splatting for Open-Vocabulary Robotic Grasping
    Zheng, Yuhang
    Chen, Xiangyu
    Zheng, Yupeng
    Gu, Songen
    Yang, Runyi
    Jin, Bu
    Li, Pengfei
    Zhong, Chengliang
    Wang, Zengmao
    Liu, Lina
    Yang, Chao
    Wang, Dawei
    Chen, Zhen
    Long, Xiaoxiao
    Wang, Meiqing
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7827 - 7834
  • [48] CTC-aligned Audio-Text Embedding for Streaming Open-vocabulary Keyword Spotting
    Jin, Sichen
    Jung, Youngmoon
    Lee, Seungjin
    Roh, Jaeyoung
    Han, Changwoo
    Cho, Hoonyoung
    INTERSPEECH 2024, 2024, : 332 - 336
  • [49] PLA: Language-Driven Open-Vocabulary 3D Scene Understanding
    Ding, Runyu
    Yang, Jihan
    Xue, Chuhui
    Zhang, Wenqing
    Bai, Song
    Qi, Xiaojuan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7010 - 7019
  • [50] Open-Vocabulary 3D Semantic Segmentation with Text-to-Image Diffusion Models
    Zhu, Xiaoyu
    Zhou, Hao
    Xing, Pengfei
    Zhao, Long
    Xu, Hao
    Liang, Junwei
    Hauptmann, Alexander
    Liu, Ting
    Gallagher, Andrew
    COMPUTER VISION - ECCV 2024, PT XXIX, 2025, 15087 : 357 - 375