Effect of Nanocontacts on Transient States in Electrical Circuits

被引:0
|
作者
Wawrzyniak, Maciej [1 ]
机构
[1] Poznan Univ Tech, Fac Elect & Telecommun, Piotrowo 3A, PL-60965 Poznan, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2019年 / 95卷 / 06期
关键词
transient states in circuits; contact resistance; nanocontacts; QUANTIZED CONDUCTANCE; POINT CONTACTS; MEMS; RESISTANCE; SHARVIN; SIZE; AU;
D O I
10.15199/48.2019.06.20
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a model of mechanical switch with stretched nanocontacts based on an analysis of the mechanisms of electron transport within a nanocontact. We use the model proposed to derive equations describing the current in a circuit with an opening switch. The measurement data and the calculation results confirm that nanocontacts substantially modify transient states in the studied circuit and therefore their effect must be taken into account in theoretical analysis.
引用
收藏
页码:110 / 116
页数:7
相关论文
共 50 条
  • [21] IMPEDANCE - ELECTRICAL EFFECT IN AC CIRCUITS
    JOLLS, KR
    RIEDINGE.RL
    CHEMICAL ENGINEERING, 1972, 79 (21) : 165 - &
  • [22] Controlling the Electrical Transport Properties of Nanocontacts to Nanowires
    Lord, Alex M.
    Maffeis, Thierry G.
    Kryvchenkova, Olga
    Cobley, Richard J.
    Kalna, Karol
    Kepaptsoglou, Despoina M.
    Rarnasse, Quentin M.
    Walton, Alex S.
    Ward, Michael B.
    Koeble, Juergen
    Wilks, Steve P.
    NANO LETTERS, 2015, 15 (07) : 4248 - 4254
  • [23] Electrical properties of metal-semiconductor nanocontacts
    N. V. Vostokov
    V. I. Shashkin
    Semiconductors, 2004, 38 : 1047 - 1052
  • [24] The integral method to calculate the power states in electrical circuits
    Hartman, Marek T.
    CPE: 2009 COMPATIBILITY AND POWER ELECTRONICS, 2009, : 180 - 185
  • [25] The integral method to calculate the power states in electrical circuits
    Hartman, Marek T.
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (03): : 194 - 199
  • [26] Mechanical, electrical, and magnetic properties of Ni nanocontacts
    Calvo, A. R.
    Caturla, A. J.
    Jacob, D.
    Untiedt, C.
    Palacios, J. J.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (02) : 165 - 168
  • [27] Role of Dislocation Movement in the Electrical Conductance of Nanocontacts
    Tadashi Ishida
    Kuniyuki Kakushima
    Teruyasu Mizoguchi
    Hiroyuki Fujita
    Scientific Reports, 2
  • [28] Electrical characterization of nanocontacts fabricated by nanoindentation and electrodeposition
    Carrey, J
    Bouzehouane, K
    George, JM
    Ceneray, C
    Blon, T
    Bibes, M
    Vaurès, A
    Fusil, S
    Kenane, S
    Vila, L
    Piraux, L
    APPLIED PHYSICS LETTERS, 2002, 81 (04) : 760 - 762
  • [29] Methods to fabricate nanocontacts for electrical addressing of single molecules
    Carrara, S
    Riley, DJ
    Bavastrello, V
    Stura, E
    Nicolini, C
    SENSORS AND ACTUATORS B-CHEMICAL, 2005, 105 (02) : 542 - 548
  • [30] Using and Applying Computer Technologies for Studying Transient Processes in Electrical Circuits
    Sarinova, Assiya Zh
    Drobinsky, Alexander, V
    Kirichenko, Lalita N.
    THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020), 2021, 2337