Cofinalities of Borel ideals

被引:5
|
作者
Hrusak, Michael [1 ,2 ]
Rojas-Rebolledo, Diego [3 ]
Zapletal, Jindrich [2 ,4 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
[2] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[3] St Marys Univ, Dept Math & Comp Sci, Halifax, NS B3H 3C3, Canada
[4] Univ Florida, Dept Math, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
D O I
10.1002/malq.201200079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the possible values of the cofinality invariant for various Borel ideals on the natural numbers. We introduce the notions of a fragmented and gradually fragmented F sigma ideal and prove a dichotomy for fragmented ideals. We show that every gradually fragmented ideal has cofinality consistently strictly smaller than the cardinal invariant b and produce a model where there are uncountably many pairwise distinct cofinalities of gradually fragmented ideals.
引用
收藏
页码:31 / 39
页数:9
相关论文
共 50 条
  • [21] A stable property of Borel type ideals
    Cimpoeas, Mircea
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) : 674 - 677
  • [22] Katětov order on Borel ideals
    Michael Hrušák
    Archive for Mathematical Logic, 2017, 56 : 831 - 847
  • [23] ON THE ORBITS OF A BOREL SUBGROUP IN ABELIAN IDEALS
    Panyushev, Dmitri
    TRANSFORMATION GROUPS, 2017, 22 (02) : 503 - 524
  • [24] p-Borel principal ideals
    Aramova, A
    Herzog, J
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (01) : 103 - 121
  • [25] Action of the Borel group on monomial ideals
    La Scala, R
    Logar, A
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (05) : 2427 - 2444
  • [26] NOTE ON ABELIAN IDEALS OF A BOREL SUBALGEBRA
    Kwon, Namhee
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2007, 1 : 51 - 54
  • [27] ON THE ORBITS OF A BOREL SUBGROUP IN ABELIAN IDEALS
    DMITRI PANYUSHEV
    Transformation Groups, 2017, 22 : 503 - 524
  • [28] Rigidity properties of Borel ideals on the integers
    Kechris, AS
    TOPOLOGY AND ITS APPLICATIONS, 1998, 85 (1-3) : 195 - 205
  • [29] SOME REMARKS ON BOREL TYPE IDEALS
    Cimpoeas, Mircea
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 724 - 727
  • [30] Freiman Borel-type ideals
    Zhu, Guangjun
    Zhao, Yakun
    Du, Shiya
    Yang, Yulong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (01)