Modelling long-term changes in forest productivity and soil nitrogen supply following conversion of pasture to Pinus radiata plantation

被引:0
|
作者
McMurtrie, RE [1 ]
Halliday, JC [1 ]
Dewar, RC [1 ]
Tate, KR [1 ]
Corbeels, M [1 ]
Scott, NA [1 ]
机构
[1] Univ New S Wales, Sch Biol Sci, Sydney, NSW, Australia
关键词
forest productivity; G'DAY; harvesting; modelling; nitrogen cycling; Pinus radiata; sustainability;
D O I
暂无
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Recent experimental studies have revealed that soil carbon (C) and nitrogen (N) content and soil N availability often decrease following conversion of improved pasture to Pinus radiata plantations. These decreases are a concern partly because of possible negative consequences for future forest productivity. This issue is investigated by applying the G'DAY model of C and N cycling in pasture and forest ecosystems to simulate the replacement of improved, legume-rich pasture by P. radiata plantations that are grown over several harvest cycles at a site in New Zealand. We illustrate how process models can be used for analysing constraints on long-term productivity by performing a sensitivity analysis of G'DAY's response to various rates of N removal. We find that simulated productivity declines over successive forest rotations and that the rate of decline is sensitive to N losses through wood harvesting, slash removal, and N leakage (i.e. leaching and soil gaseous emission). However, even when these N losses are zero, forest productivity still declines because of a gradual depletion of labile soil N reserves. Simulations are used to evaluate the mean annual increment (MAI) in wood volume over forty 30-year forest rotations. With harvesting only, simulated MAI declines from 44 m(3) ha(-1)yr(-1) in the first rotation to 18 m; ha(-1)yr(-1) in the fortieth rotation. The simulated MAI in the fortieth rotation is 13 m(3) ha(-1)yr(-1) with harvesting and leakage, and 11 m(3) ha(-1)yr(-1) with harvesting, leakage and 50% slash removal. If the simulation with harvesting only is modified so N removed in harvests is replaced by an equivalent fertiliser addition, MAI is 28 m(3) ha(-1)yr(-1) in the fortieth rotation. Results presented are tentative and should be regarded with caution until the model is fully tested.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 50 条
  • [32] Comments on 'long-term soil chemistry changes in aggrading forest ecosystems'
    1600, Soil Science Soc of America, Madison, WI, USA (59):
  • [33] Long-term changes of aggregate-associated and labile soil organic carbon and nitrogen after conversion from forest to grassland and cropland in northern Turkey
    Kocyigit, R.
    Demirci, S.
    LAND DEGRADATION & DEVELOPMENT, 2012, 23 (05) : 475 - 482
  • [34] Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China
    Yang, Xiang-de
    Ni, Kang
    Shi, Yuan-zhi
    Yi, Xiao-yun
    Zhang, Qun-feng
    Fang, Li
    Ma, Li-feng
    Ruan, Jianyun
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2018, 252 : 74 - 82
  • [35] Long-term effects of elevated nitrogen on forest soil organic matter stability
    Christopher Swanston
    Peter S. Homann
    Bruce A. Caldwell
    David D. Myrold
    Lisa Ganio
    Phillip Sollins
    Biogeochemistry, 2004, 70 : 229 - 252
  • [36] Long-term effects of elevated nitrogen on forest soil organic matter stability
    Swanston, C
    Homann, PS
    Caldwell, BA
    Myrold, DD
    Ganio, L
    Sollins, P
    BIOGEOCHEMISTRY, 2004, 70 (02) : 227 - 250
  • [37] Long-term changes in productivity of eucalypt plantations under different harvest residue and nitrogen management practices: A modelling analysis
    Corbeels, M
    McMurtrie, RE
    Pepper, DA
    Mendham, DS
    Grove, TS
    O'Connell, AM
    FOREST ECOLOGY AND MANAGEMENT, 2005, 217 (01) : 1 - 18
  • [38] Deep soil water depletion and soil organic carbon and total nitrogen accumulation in a long-term alfalfa pasture
    Wang, Li
    Ali, Gulnazar
    Wang, Zikui
    LAND DEGRADATION & DEVELOPMENT, 2023, 34 (08) : 2164 - 2176
  • [39] Long-term nitrogen-addition-induced shifts in the ectomycorrhizal fungal community are associated with changes in fine root traits and soil properties in a mixed Pinus koraiensis forest
    Wang, Junni
    Han, Shijie
    Wang, Cunguo
    Li, Mai -He
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2022, 112
  • [40] Changes in soil microbial metabolic activity following long-term forest succession on the central Loess Plateau, China
    Liu, Yulin
    Song, Xinzhang
    Wang, Kaibo
    He, Zhirui
    Pan, Yingjie
    Li, Jiwei
    Hai, Xuying
    Dong, Lingbo
    Shangguan, Zhouping
    Deng, Lei
    LAND DEGRADATION & DEVELOPMENT, 2023, 34 (03) : 723 - 735