Guided Self-Training based Semi-Supervised Learning for Fraud Detection

被引:3
|
作者
Kumar, Awanish [1 ]
Ghosh, Soumyadeep [1 ]
Verma, Janu [1 ]
机构
[1] Mastercard, AI Garage, Gurgaon, India
关键词
adversarial attack; vulnerability detection; vulnerability mitigation; transaction level vulnerability; black box vulnerability detection;
D O I
10.1145/3533271.3561783
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Semi supervised learning has attracted attention of AI researchers in the recent past, especially after the advent of deep learning methods and their success in several real world applications. Most deep learning models require large amounts of labelled data, which is expensive to obtain. Fraud detection is a very important problem for several industries and large amount of data is often available. However, obtaining labelled data is cumbersome and hence semi-supervised learning is perfectly positioned to aid us in building robust and accurate supervised models. In this work, we consider different kinds of fraud detection paradigms and show that a self-training based semi-supervised learning approach can produce significant improvements over a model that has been training on a limited set of labelled data. We propose a novel self-training approach by using a guided sharpening technique using a pair of autoencoders which provide useful cues for incorporating unlabelled data in the training process. We conduct thorough experiments on three different real world databases and analysis to showcase the effectiveness of the approach. On the elliptic bitcoin fraud dataset, we show that utilizing unlabelled data improves the F-1 score of the model trained on limited labelled data by around 10%.
引用
收藏
页码:148 / 155
页数:8
相关论文
共 50 条
  • [21] Interactive Self-Training with Mean Teachers for Semi-supervised Object Detection
    Yang, Qize
    Wei, Xihan
    Wang, Biao
    Hua, Xian-Sheng
    Zhang, Lei
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5937 - 5946
  • [22] Semi-supervised self-training for sentence subjectivity classification
    Wang, Bin
    Spencer, Bruce
    Ling, Charles X.
    Zhang, Harry
    ADVANCES IN ARTIFICIAL INTELLIGENCE, 2008, 5032 : 344 - +
  • [23] Semi-supervised self-training for decision tree classifiers
    Tanha, Jafar
    van Someren, Maarten
    Afsarmanesh, Hamideh
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (01) : 355 - 370
  • [24] Fast semi-supervised self-training algorithm based on data editing
    Li, Bing
    Wang, Jikui
    Yang, Zhengguo
    Yi, Jihai
    Nie, Feiping
    INFORMATION SCIENCES, 2023, 626 : 293 - 314
  • [25] Semi-Supervised PolSAR Image Classification Based on Self-Training and Superpixels
    Li, Yangyang
    Xing, Ruoting
    Jiao, Licheng
    Chen, Yanqiao
    Chai, Yingte
    Marturi, Naresh
    Shang, Ronghua
    REMOTE SENSING, 2019, 11 (16)
  • [26] Semi-supervised process monitoring based on self-training PCA model
    Zheng, Junhua
    Ye, Lingjian
    Ge, Zhiqiang
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 187 : 1311 - 1321
  • [27] Semi-supervised Segmentation with Self-training Based on Quality Estimation and Refinement
    Zheng, Zhou
    Wang, Xiaoxia
    Zhang, Xiaoyun
    Zhong, Yumin
    Yao, Xiaofen
    Zhang, Ya
    Wang, Yanfeng
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020, 2020, 12436 : 30 - 39
  • [28] Federated Self-training for Semi-supervised Audio Recognition
    Tsouvalas, Vasileios
    Saeed, Aaqib
    Ozcelebi, Tanir
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2022, 21 (06)
  • [29] Semi-supervised self-training for decision tree classifiers
    Jafar Tanha
    Maarten van Someren
    Hamideh Afsarmanesh
    International Journal of Machine Learning and Cybernetics, 2017, 8 : 355 - 370
  • [30] SEMI-SUPERVISED FACE RECOGNITION WITH LDA SELF-TRAINING
    Zhao, Xuran
    Evans, Nicholas
    Dugelay, Jean-Luc
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,