Aspherical manifolds that cannot be triangulated

被引:3
|
作者
Davis, Michael W. [1 ]
Fowler, Jim [1 ]
Lafont, Jean-Francois [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2014年 / 14卷 / 02期
基金
美国国家科学基金会;
关键词
HYPERBOLIZATION;
D O I
10.2140/agt.2014.14.795
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a result of Manolescu [14] there are topological closed n-manifolds that cannot be triangulated for each n >= 5. We show here that for n >= 6 we can choose such manifolds to be aspherical.
引用
收藏
页码:795 / 803
页数:9
相关论文
共 50 条
  • [21] Volume and homology growth of aspherical manifolds
    Sauer, Roman
    GEOMETRY & TOPOLOGY, 2016, 20 (02) : 1035 - 1059
  • [22] ON THE TREEWIDTH OF TRIANGULATED 3-MANIFOLDS
    Huszar, Kristof
    Spreer, Jonathan
    Wagner, Uli
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2019, 10 (02) : 70 - 98
  • [23] Combinatorial spin structures on triangulated manifolds
    Budney, Ryan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1259 - 1279
  • [24] On r-stacked triangulated manifolds
    Satoshi Murai
    Eran Nevo
    Journal of Algebraic Combinatorics, 2014, 39 : 373 - 388
  • [25] The Beltrami flow over triangulated manifolds
    Lopez-Perez, L
    Deriche, R
    Sochen, N
    COMPUTER VISION AND MATHEMATICAL METHODS IN MEDICAL AND BIOMEDICAL IMAGE ANALYSIS, 2004, 3117 : 135 - 144
  • [26] On the rooted forests in triangulated closed manifolds
    Mukherjee, Sajal Kumar
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (10): : 2034 - 2043
  • [27] A duality in Buchsbaum rings and triangulated manifolds
    Murai, Satoshi
    Novik, Isabella
    Yoshida, Ken-ichi
    ALGEBRA & NUMBER THEORY, 2017, 11 (03) : 635 - 656
  • [28] Model aspherical manifolds with no periodic maps
    Malfait, W
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (11) : 4693 - 4708
  • [29] CONNECTED-SUMS OF ASPHERICAL MANIFOLDS
    MCCULLOUGH, D
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (01) : 17 - 28
  • [30] The action of matrix groups on aspherical manifolds
    Ye, Shengkui
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (05): : 2875 - 2895