A van der Pol-Duffing Oscillator Model of Hydrodynamic Forces on Canonical Structures

被引:39
|
作者
Akhtar, Imran [1 ]
Marzouk, Osama A. [2 ]
Nayfeh, Ali H. [2 ]
机构
[1] Virginia Tech, Interdisciplinary Ctr Appl Math, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA
来源
关键词
VORTEX-EXCITED VIBRATIONS; NAVIER-STOKES EQUATIONS; FRACTIONAL-STEP METHOD; CIRCULAR-CYLINDER; BLUFF BODIES; WAKE; LIFT; DRAG; DYNAMICS;
D O I
10.1115/1.3192127
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Numerical simulations of the flow past elliptic cylinders with different eccentricities have been performed using a parallel incompressible computational fluid-dynamics (CFD) solver. The pressure is integrated over the surface to compute the lift and drag forces on the cylinders. The numerical results of different cases are then used to develop reduced-order models for the lift and drag coefficients. The lift coefficient is modeled with a generalized van der Pol-Duffing oscillator and the drag coefficient is expressed in terms of the lift coefficient. The parameters in the oscillator model are computed for each elliptic cylinder. The results of the model match the CFD results not only in the time domain but also in the spectral domain. [DOI: 10.1115/1.3192127]
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Strongly resonant bifurcations of nonlinearly coupled van der pol-duffing oscillator
    Chunbiao G.
    Qishao L.
    Kelei H.
    Applied Mathematics and Mechanics, 1999, 20 (1) : 68 - 75
  • [32] Combination of fractional FLANN filters for solving the Van der Pol-Duffing oscillator
    Yin, Kai-Li
    Pu, Yi-Fei
    Lu, Lu
    NEUROCOMPUTING, 2020, 399 : 183 - 192
  • [33] Strongly resonant bifurcations of nonlinearly coupled Van der Pol-Duffing Oscillator
    Gan, CB
    Lu, QS
    Huang, KL
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (01) : 68 - 75
  • [34] Stability analysis for periodic solutions of the Van der Pol-Duffing forced oscillator
    Cui, Jifeng
    Liang, Jiaming
    Lin, Zhiliang
    PHYSICA SCRIPTA, 2016, 91 (01)
  • [35] Van der Pol-Duffing oscillator: Global view of metamorphoses of the amplitude profiles
    Kyziol, Jan
    Okninski, Andrzej
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 102 - 106
  • [36] On Coupled Delayed Van der Pol-Duffing Oscillators
    Pandey, Ankan
    Mitra, Mainak
    Ghose-Choudhury, A.
    Guha, Partha
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2020, 9 (04) : 567 - 574
  • [37] Hybrid rayleigh-van der pol-duffing oscillator: Stability analysis and controller
    He, Chun-Hui
    Tian, Dan
    Moatimid, Galal M.
    Salman, Hala F.
    Zekry, Marwa H.
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (01) : 244 - 268
  • [38] On the dynamics of a Van der Pol-Duffing snap system
    Wiggers, Vinicius
    Rech, Paulo C.
    EUROPEAN PHYSICAL JOURNAL B, 2022, 95 (02):
  • [39] A NONSMOOTH VAN DER POL-DUFFING OSCILLATOR (II): THE SUM OF INDICES OF EQUILIBRIA IS 1
    Wang, Zhaoxia
    Chen, Hebai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1549 - 1589
  • [40] Independent Period-2 Motions to Chaos in a van der Pol-Duffing Oscillator
    Xu, Yeyin
    Luo, Albert C. J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (15):