Atmospheric condensed-phase reactions of glyoxal with methylamine

被引:146
|
作者
De Haan, David O. [1 ,2 ,3 ]
Tolbert, Margaret A. [2 ,3 ]
Jimenez, Jose L. [2 ,3 ]
机构
[1] Univ San Diego, Dept Chem & Biochem, San Diego, CA 92110 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
SECONDARY ORGANIC AEROSOL; HIGH-RESOLUTION; OLIGOMER FORMATION; MASS-SPECTROMETRY; FOG WATERS; TIME; CALIFORNIA; PARTICLES; ALDEHYDES;
D O I
10.1029/2009GL037441
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Glyoxal reacts with methylamine in drying cloud droplet/aerosol surrogates to form high molecular mass oligomers along with smaller amounts of 1,3-dimethylimidazole and light-absorbing compounds. The patterns observed by high-resolution time-of-flight aerosol mass spectrometry indicate that oligomers form from repeated imine units. The reactions are 1st order in each reactant: rate-limiting imine formation is followed by rapid dimer and oligomer formation. While excess methylamine evaporates from the droplet, half the glyoxal does not, due to self-oligomerization reactions that occur in the absence of methylamine. Glyoxal irreversibly traps volatile amine compounds in the aerosol phase, converting them into oligomers. This is the first reported mechanism for the formation of stable secondary organic aerosol (SOA) material from methylamine, a substance with only one carbon, and could produce as much as 11 Tg SOA yr(-1) globally if glyoxal reacts exclusively by this pathway. Citation: De Haan, D. O., M. A. Tolbert, and J. L. Jimenez (2009), Atmospheric condensed-phase reactions of glyoxal with methylamine, Geophys. Res. Lett., 36, L11819, doi:10.1029/2009GL037441.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] An alternative approach to condensed-phase photoionization
    Ma, XG
    PHYSICS LETTERS A, 2006, 348 (3-6) : 310 - 317
  • [32] ROLE OF CONDENSED-PHASE REACTIONS DURING IGNITION OF A COMPOSITE SOLID-PROPELLANT
    KISHORE, K
    PAIVERNEKER, VR
    SUNITHA, MR
    THERMOCHIMICA ACTA, 1977, 19 (02) : 232 - 235
  • [33] EXPLOSIONS IN CONDENSED-PHASE NITRIC OXIDE
    MILLER, RO
    INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1968, 7 (04): : 590 - &
  • [34] Condensed-phase control? Or gas-phase control?
    M. W. Beckstead
    Combustion, Explosion, and Shock Waves, 2007, 43 : 243 - 245
  • [35] PHOTOINDUCED HARPOON REACTIONS AS A PROBE OF CONDENSED-PHASE DYNAMICS - ICL IN LIQUID AND SOLID XENON
    OKADA, F
    WIEDEMAN, L
    APKARIAN, VA
    JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (04): : 1267 - 1272
  • [36] Scattering at condensed-phase surfaces: general discussion
    Auerbach, Daniel J.
    Babikov, Dmitri
    Butler, Alexander
    Chandler, David W.
    Fingerhut, Jan
    Guo, Hua
    Harding, Dan J.
    Heathcote, David
    Hertl, Nils
    Jiang, Bin
    Kroes, Geert-Jan
    Lane, Paul D.
    Loreau, Jerome
    Mackenzie, Stuart R.
    Mckendrick, Kenneth G.
    Moon, Daniel R.
    Nathanson, Gilbert M.
    Neumark, Daniel M.
    Pandey, Rahul
    Schatz, George C.
    Sibener, Steven J.
    Srivastav, Ajeet
    Vallance, Claire
    van Bree, Robert A. B.
    Wagner, Joshua
    Walker, Gilbert C.
    Watson, Peter D.
    Willitsch, Stefan
    Wodtke, Alec M.
    Zhao, Bum Suk
    FARADAY DISCUSSIONS, 2024, 251 (00) : 471 - 508
  • [37] Condensed-phase control? Or gas-phase control?
    Beckstead, M. W.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2007, 43 (02) : 243 - 245
  • [38] TRANSIENT ALKYLAMINIUM RADICALS IN NORMAL-HEXANE - CONDENSED-PHASE ION MOLECULE REACTIONS
    WERST, DW
    TRIFUNAC, AD
    JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (03): : 1268 - 1274
  • [39] Novel condensed-phase catalysts for oxidation of methane
    Michalkiewicz, B
    Opaczewska, L
    PRZEMYSL CHEMICZNY, 2003, 82 (8-9): : 629 - 630
  • [40] Conditions of undercompressed detonation of condensed-phase explosives
    Al'tshuler, L.V.
    Zhuchenko, V.S.
    Imkhovik, N.A.
    Men'shov, I.S.
    Khimicheskaya Fizika, 2001, 20 (08): : 12 - 19