Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries

被引:90
|
作者
Reddy, M. Jeevan Kumar [1 ]
Ryu, Sung Hun [1 ]
Shanmugharaj, A. M. [1 ]
机构
[1] Kyung Hee Univ, Dept Chem Engn, Yongin 446701, Gyeonggi Do, South Korea
关键词
ONE-POT SYNTHESIS; CORE-SHELL; ELECTROCHEMICAL PROPERTIES; SNO2/GRAPHENE COMPOSITE; QUANTUM DOTS; PERFORMANCE; GROWTH; NANOSHEETS; NANOSTRUCTURES; NANOCOMPOSITES;
D O I
10.1039/c5nr06680h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 degrees C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g(-1), 1255 mA h g(-1) and 1360 mA h g(-1) that decrease to 750 mA h g(-1), 643 mA h g(-1) and 560 mA h g(-1) depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.
引用
收藏
页码:471 / 482
页数:12
相关论文
共 50 条
  • [21] High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries
    Lian, Peichao
    Zhu, Xuefeng
    Liang, Shuzhao
    Li, Zhong
    Yang, Weishen
    Wang, Haihui
    ELECTROCHIMICA ACTA, 2011, 56 (12) : 4532 - 4539
  • [22] Ultrafine SnO2 nanocrystals anchored graphene composites as anode material for lithium-ion batteries
    Zhang, Jun
    Chang, Ling
    Wang, Fengxian
    Xie, Dong
    Su, Qingmei
    Du, Gaohui
    MATERIALS RESEARCH BULLETIN, 2015, 68 : 120 - 125
  • [23] In situ chemical synthesis of SnO2/reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries
    Zhang, Haijiao
    Xu, Panpan
    Ni, Yang
    Geng, Hongya
    Zheng, Guanghong
    Dong, Bin
    Jiao, Zheng
    JOURNAL OF MATERIALS RESEARCH, 2014, 29 (05) : 617 - 624
  • [24] In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery
    Du, Zhifeng
    Yin, Xiaoming
    Zhang, Ming
    Hao, Quanyi
    Wang, Yanguo
    Wang, Taihong
    MATERIALS LETTERS, 2010, 64 (19) : 2076 - 2079
  • [25] FeOx-Coated SnO2 as an Anode Material for Lithium Ion Batteries
    El-Shinawi, Hany
    Schulze, Anne S.
    Neumeier, Manuel
    Leichtweiss, Thomas
    Janek, Juergen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (17): : 8818 - 8823
  • [26] SnO2 Nanoparticles Embedded Biochar as Anode Material in Lithium Ion Batteries
    Chen, Ke
    Pathak, Rajesh
    Bahrami, Behzad
    Rahman, Md Tawabur
    Lu, Huitian
    Zhou, Yue
    Qiao, Qiquan
    2019 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2019, : 465 - 468
  • [27] A reduced graphene oxide/SnO2/polyaniline nanocomposite for the anode material of Li-ion batteries
    Liu, Hao
    Liu, Bin Hong
    Li, Zhou Peng
    SOLID STATE IONICS, 2016, 294 : 6 - 14
  • [28] SnO2 Quantum Dots@Graphene Oxide as a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries
    Zhao, Kangning
    Zhang, Lei
    Xia, Rui
    Dong, Yifan
    Xu, Wangwang
    Niu, Chaojiang
    He, Liang
    Yan, Mengyu
    Qu, Longbin
    Mai, Liqiang
    SMALL, 2016, 12 (05) : 588 - 594
  • [29] Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries
    Miao, Cui
    Liu, Ming
    He, Yan-Bing
    Qin, Xianying
    Tang, Linkai
    Huang, Bing
    Li, Rui
    Li, Baohua
    Rang, Feiyu
    ENERGY STORAGE MATERIALS, 2016, 3 : 98 - 105
  • [30] Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries
    Zhao, N. H.
    Yang, L. C.
    Zhang, P.
    Wang, G. J.
    Wang, B.
    Yao, B. D.
    Wu, Y. P.
    MATERIALS LETTERS, 2010, 64 (08) : 972 - 975