Identifying forest thinning using anomalous change detection on synthetic aperture radar data

被引:0
|
作者
Reinisch, Elena C. [1 ]
Theiler, James [1 ]
Ziemann, Amanda [1 ]
机构
[1] Los Alamos Natl Lab, Space Data Sci & Syst Grp, Intelligence & Space Res Div, Los Alamos, NM 87545 USA
关键词
remote sensing; synthetic aperture radar; interferometric synthetic aperture radar; change detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply anomalous change detection (ACD) to synthetic aperture radar (SAR) data to detect forest thinning at the Valles Caldera in New Mexico. By applying ACD across dimensions other than temporal, we establish baselines for change detection. Application of ACD across different polarizations highlights anomalous relationships associated with different types of scattering mechanisms. We also introduce a metric for distinguishing between anomalies consistently present in data over time and more subtle changes which may be obscured by these anomalies. This is especially useful for analyzing SAR backscatter intensity, which can be dominated by the presence of topographic features that are not of interest.
引用
收藏
页码:38 / 41
页数:4
相关论文
共 50 条
  • [31] TARGET AND CHANGE DETECTION IN SYNTHETIC APERTURE RADAR SENSING OF URBAN STRUCTURES
    Moulton, Jeannie
    Kassam, Saleem
    Ahmad, Fauzia
    Amin, Moeness
    Yemelyanov, Konstantin
    2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 1115 - +
  • [32] Change detection methods for identification of mines in synthetic aperture radar imagery
    Nasrabadi, Nasser
    Tates, Maria
    Kwon, Heesung
    JOURNAL OF APPLIED REMOTE SENSING, 2007, 1 (01)
  • [33] Laboratory bistatic synthetic aperture radar coherent change detection investigation
    Hagelberg, Alexander
    Andre, Daniel
    Finnis, Mark
    ELECTRONICS LETTERS, 2023, 59 (15)
  • [34] Convolution and Attention Mixer for Synthetic Aperture Radar Image Change Detection
    Zhang H.
    Lin Z.
    Gao F.
    Dong J.
    Du Q.
    Li H.-C.
    IEEE Geoscience and Remote Sensing Letters, 2023, 20
  • [35] Forest information from synthetic aperture radar
    Dobson, MC
    JOURNAL OF FORESTRY, 2000, 98 (06) : 41 - 43
  • [36] A Deep Learning Method for Change Detection in Synthetic Aperture Radar Images
    Li, Yangyang
    Peng, Cheng
    Chen, Yanqiao
    Jiao, Licheng
    Zhou, Linhao
    Shang, Ronghua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 5751 - 5763
  • [37] Superpixel cosegmentation algorithm for synthetic aperture radar image change detection
    Shao, Ningyuan
    Zou, Huanxin
    Chen, Cheng
    Li, Meilin
    Sun, Jiachi
    Qin, Xianxiang
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (19): : 6165 - 6169
  • [38] Automatic Change Detection in Synthetic Aperture Radar Images Based on PCANet
    Gao, Feng
    Dong, Junyu
    Li, Bo
    Xu, Qizhi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1792 - 1796
  • [39] Change Detection by Deep Neural Networks for Synthetic Aperture Radar Images
    Liao, Frank
    Koshelev, Elizabeth
    Milton, Malcolm
    Jin, Yuanwei
    Lu, Enyue
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2016, : 947 - 951
  • [40] Unsupervised radiometric change detection from synthetic aperture radar images
    Bultingaire, Thomas
    Meraoumia, Ines
    Kervazo, Christophe
    Denis, Loic
    Tupin, Florence
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 2217 - 2221