Ensemble Method Using Correlation Based Feature Selection with Stratified Sampling for Classification

被引:0
|
作者
Meshram, Shweta B. [1 ]
Shinde, Sharmila M. [1 ]
机构
[1] JSCOE, Comp Engn Dept, Pune, Maharashtra, India
关键词
CFS-SS; Ensemble method; High dimensional data; RBFNN;
D O I
10.1007/978-981-10-1675-2_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble methods are preferred as they represent good significance over specific predictor regarding accuracy and confidence in classification. This paper proposes here the ensemble method with multiple independent feature subsets in order to classify high-dimensional data in the area of the biomedicine using Correlation feature selection with Stratified Sampling and Radial Basis Functions Neural Network. At first, method select the feature subsets using Correlation based feature Selection with Stratified Sampling. It minimizes the redundancy in the features. After generating the feature subsets, each feature subset is trained using base classifier and then these results are combined using majority voting. The proposed method uses CFS-SS in ensemble classification method.
引用
收藏
页码:47 / 55
页数:9
相关论文
共 50 条
  • [41] ENSEMBLE FEATURE SELECTION APPROACH BASED ON FEATURE RANKING FOR RICE SEED IMAGES CLASSIFICATION
    Dzi Lam Tran Tuan
    Surinwarangkoon, Thongchai
    Meethongjan, Kittikhun
    Vinh Truong Hoang
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 18 (03) : 198 - 206
  • [42] A Stratified Feature Ranking Method for Supervised Feature Selection
    Chen, Renjie
    Chen, Xiaojun
    Yuan, Guowen
    Sun, Wenya
    Wu, Qingyao
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8059 - 8060
  • [43] Ensemble Feature Selection for Heart Disease Classification
    Benhar, Houda
    Idri, Ali
    Hosni, Mohamed
    HEALTHINF: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF, 2021, : 369 - 376
  • [44] Classification of lung cancer using ensemble-based feature selection and machine learning methods
    Cai, Zhihua
    Xu, Dong
    Zhang, Qing
    Zhang, Jiexia
    Ngai, Sai-Ming
    Shao, Jianlin
    MOLECULAR BIOSYSTEMS, 2015, 11 (03) : 791 - 800
  • [45] Sentiment Analysis on Movie Reviews Using Ensemble Features and Pearson Correlation Based Feature Selection
    Rangkuti, Fachrul Rozy Saputra
    Fauzi, M. Ali
    Sari, Yuita Arum
    Sari, Eka Dewi Lukmana
    PROCEEDINGS OF 2018 3RD INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2018), 2018, : 88 - 91
  • [46] Correlation-Based and Causal Feature Selection Analysis for Ensemble Classifiers
    Duangsoithong, Rakkrit
    Windeatt, Terry
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2010, 5998 : 25 - 36
  • [47] Ensemble feature selection using distance-based supervised and unsupervised methods in binary classification
    Hallajian, Bita
    Motameni, Homayun
    Akbari, Ebrahim
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 200
  • [48] Ensemble selection for feature-based classification of diabetic maculopathy images
    Chowriappa, Pradeep
    Dua, Sumeet
    Acharya, U. Rajendra
    Krishnan, M. Muthu Rama
    COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (12) : 2156 - 2162
  • [49] Mutual Information-Based Feature Selection and Ensemble Learning for Classification
    Qi, Chengming
    Zhou, Zhangbing
    Wang, Qun
    Hu, Lishuan
    2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI), 2016, : 116 - 121
  • [50] Text Classification Using Correlation Based Feature Selection on Multi-layer ELM Feature Space
    Roul, Rajendra Kumar
    Sahoo, Jajati Keshari
    Satyanath, Gaurav
    DISTRIBUTED COMPUTING AND INTELLIGENT TECHNOLOGY, ICDCIT 2023, 2023, 13776 : 355 - 361