Truncated t-adic symmetric multiple zeta values and double shuffle relations

被引:8
|
作者
Ono, Masataka [1 ]
Seki, Shin-ichiro [2 ]
Yamamoto, Shuji [3 ]
机构
[1] Kyushu Univ, Multiple Zeta Res Ctr, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Sci, Aoba Ku, 6-3 Aoba, Sendai, Miyagi 9808578, Japan
[3] Keio Univ, Fac Sci & Technol, Dept Math, Kouhoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
关键词
t-adic symmetric multiple zeta values; Double shuffle relation; Kaneko– Zagier’ s conjecture; Multiple zeta values of Mordell– Tornheim type;
D O I
10.1007/s40993-021-00241-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a refinement of the symmetric multiple zeta value, called the t-adic symmetric multiple zeta value, by considering its finite truncation. More precisely, two kinds of regularizations (harmonic and shuffle) give two kinds of the t-adic symmetric multiple zeta values, thus we introduce two kinds of truncations correspondingly. Then we show that our truncations tend to the corresponding t-adic symmetric multiple zeta values, and satisfy the harmonic and shuffle relations, respectively. This gives a new proof of the double shuffle relations for t-adic symmetric multiple zeta values, first proved by Jarossay. In order to prove the shuffle relation, we develop the theory of truncated t-adic symmetric multiple zeta values associated with 2-colored rooted trees. Finally, we discuss a refinement of Kaneko-Zagier's conjecture and the t-adic symmetric multiple zeta values of Mordell-Tornheim type.
引用
收藏
页数:28
相关论文
共 50 条