Robust algorithms for principal component analysis

被引:50
|
作者
Yang, TN [1 ]
Wang, SD [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 106, Taiwan
关键词
principal component analysis; robust algorithm; noise clustering; neural networks; fuzzy theory;
D O I
10.1016/S0167-8655(99)00060-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the issues related to the design of fuzzy robust principal component analysis (FRPCA) algorithms. The design of robust principal component analysis has been studied in the literature of statistics for over two decades. More recently Xu and Yuille proposed a family of online robust principal component analysis based on statistical physics approach. We extend Xu and Yuille's objective function by using fuzzy membership and derive improved algorithms that can extract the appropriate principal components from the spoiled data set. The difficulty of selecting an appropriate hard threshold in Xu and Yuille's approach is alleviated by replacing the threshold by an automatically selected soft threshold in FRPCA. Artificially generated data sets are used to evaluate the performance of various PCA algorithms. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:927 / 933
页数:7
相关论文
共 50 条
  • [21] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [22] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [23] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [24] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [25] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [26] Robust Discriminative Principal Component Analysis
    Xu, Xiangxi
    Lai, Zhihui
    Chen, Yudong
    Kong, Heng
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 231 - 238
  • [27] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [28] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [29] Double robust principal component analysis
    Wang Q.
    Gao Q.
    Sun G.
    Ding C.
    Neurocomputing, 2022, 391 : 119 - 128
  • [30] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613