New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals

被引:45
|
作者
Butt, Saad Ihsan [1 ]
Umar, Muhammad [1 ]
Rashid, Saima [2 ]
Akdemir, Ahmet Ocak [3 ]
Chu, Yu-Ming [4 ,5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore, Pakistan
[2] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[3] AgriIbrahim Cecen Univ, Fac Sci & Letters, Dept Math, Agri, Turkey
[4] Huzhou Univ, Dept Math, Huzhou, Peoples R China
[5] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Convex functions; Hermite-Hadamard inequality; Jensen inequality; Jensen-Mercer inequality; New conformable k-fractional integrals; 26E60; HADAMARD TYPE INEQUALITIES; CONVEX-FUNCTIONS; BOUNDS; REFINEMENTS; CALCULUS; SOLITONS; VARIANT;
D O I
10.1186/s13662-020-03093-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish serval novel Hermite-Jensen-Mercer-type inequalities for convex functions in the framework of the k-fractional conformable integrals by use of our new approaches. Our obtained results are the generalizations, improvements, and extensions of some previously known results, and our ideas and methods may lead to a lot of follow-up research.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Unifications of Continuous and Discrete Fractional Inequalities of the Hermite-Hadamard-Jensen-Mercer Type via Majorization
    Faisal, Shah
    Khan, Muhammad Adil
    Khan, Tahir Ullah
    Saeed, Tareq
    Sayed, Zaid Mohammmad Mohammad Mahdi
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [22] Jensen-Mercer variant of Hermite-Hadamard type inequalities via generalized fractional operator
    Butt, Saad Ihsan
    Nadeem, Mehroz
    Nasir, Jamshed
    Akdemir, Ahmet Ocak
    Orujova, Malahat Sh.
    FILOMAT, 2024, 38 (29) : 10463 - 10483
  • [23] Some New Improvements for Fractional Hermite-Hadamard Inequalities by Jensen-Mercer Inequalities
    Alshehri, Maryam Gharamah Ali
    Hyder, Abd-Allah
    Budak, Huseyin
    Barakat, Mohamed A.
    JOURNAL OF FUNCTION SPACES, 2024, 2024
  • [24] JENSEN TYPE INEQUALITIES AND THEIR APPLICATIONS VIA FRACTIONAL INTEGRALS
    Abbaszadeh, Sadegh
    Ebadian, Ali
    Jaddi, Mohsen
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (08) : 2459 - 2488
  • [25] Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function
    Ma, Fangfang
    AIMS MATHEMATICS, 2022, 7 (01): : 784 - 803
  • [26] Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results
    Zhao, Shupeng
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nasir, Jamshed
    Umar, Muhammad
    Liu, Ya
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [27] Some New Jensen-Mercer Type Integral Inequalities via Fractional Operators
    Bayraktar, Bahtiyar
    Korus, Peter
    Valdes, Juan Eduardo Napoles
    AXIOMS, 2023, 12 (06)
  • [28] New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization
    Saeed, Tareq
    Khan, Muhammad Adil
    Faisal, Shah
    Alsulami, Hamed H.
    Alhodaly, Mohammed Sh.
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [29] On Polya-Szego and Cebysev type inequalities via generalized k-fractional integrals
    Rashid, Saima
    Jarad, Fahd
    Kalsom, Humaira
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [30] New Variant of Hermite-Jensen-Mercer Inequalities via Riemann-Liouville Fractional Integral Operators
    Kang, Qiong
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nadeem, Mehroz
    Nasir, Jamshed
    Yang, Hong
    JOURNAL OF MATHEMATICS, 2020, 2020