Selective background Monte Carlo simulation at Belle II

被引:0
|
作者
Kahn, James [1 ,2 ]
Kuhr, Thomas [1 ]
Ritter, Martin [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Phys, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany
[2] Karlsruhe Inst Technol, Inst Expt Teilchenphys, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany
关键词
D O I
10.1088/1742-6596/1525/1/012089
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Belle II experiment, beginning data taking with the full detector in early 2019, is expected to produce a volume of data fifty times that of its predecessor. This dramatic increase in data comes the opportunity for studies of rare previously inaccessible processes. The investigation of such rare processes in a high data-volume environment requires a correspondingly high volume of Monte Carlo simulations to prepare analyses and gain a deep understanding of the contributing physics processes to each individual study. This presents a significant challenge in terms of computing resource requirements and calls for more intelligent methods of simulation, in particular background processes with very high rejection rates. This work presents a method of predicting in the early stages of the simulation process the likelihood of relevancy of an individual event to the target study using convolutional neural networks. The results show a robust training that is integrated natively into the existing Belle II analysis software framework.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Monte Carlo simulation of background characteristics of low-level gamma-spectrometers
    R. Breier
    P. P. Povinec
    Journal of Radioanalytical and Nuclear Chemistry, 2009, 282 : 799 - 804
  • [42] ELMAG: A Monte Carlo simulation of electromagnetic cascades on the extragalactic background light and in magnetic fields
    Kachelriess, M.
    Ostapchenko, S.
    Tomas, R.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (04) : 1036 - 1043
  • [43] A background error covariance model of significant wave height employing Monte Carlo simulation
    郭衍游
    侯一筠
    张春美
    杨杰
    Journal of Oceanology and Limnology, 2012, (05) : 814 - 821
  • [44] DZero Monte Carlo simulation
    Graham, GE
    ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2001, 583 : 313 - 315
  • [45] Monte Carlo simulation of the ARGO
    Ciudad Universitaria, Cordoba, Argentina
    Nucl Instrum Methods Phys Res Sect A, 2 (269-274):
  • [46] Monte Carlo Simulation for Reliability
    Benson, Rodney
    Kellner, Darryl
    2020 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2020), 2020,
  • [47] INTRODUCTION TO MONTE CARLO SIMULATION
    Raychaudhuri, Samik
    2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2008, : 91 - 100
  • [48] Monte Carlo Simulation in Demography
    Zhang Jiayou
    Qi'an, Chen
    2008 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2008, : 372 - 377
  • [49] Monte Carlo simulation of transport
    Kuhl, NM
    JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 129 (01) : 170 - 180
  • [50] MONTE CARLO SIMULATION OF DIFFUSIONS
    Glynn, Peter W.
    2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2008, : 556 - 559