Spin inertia and polarization recovery in quantum dots: Role of pumping strength and resonant spin amplification

被引:8
|
作者
Schering, Philipp [1 ]
Uhrig, Goetz S. [1 ]
Smirnov, Dmitry S. [2 ]
机构
[1] Tech Univ Dortmund, Lehrstuhl Theoret Phys 1, Otto Hahn Str 4, D-44221 Dortmund, Germany
[2] Ioffe Inst, St Petersburg 194021, Russia
来源
PHYSICAL REVIEW RESEARCH | 2019年 / 1卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1103/PhysRevResearch.1.033189
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spin inertia measurements are a novel experimental tool to study long-time spin relaxation processes in semiconductor nanostructures. We develop a theory of the spin inertia effect for resident electrons and holes localized in quantum dots. We consider the spin orientation by short optical pulses with arbitrary pulse area and detuning from the trion resonance. The interaction with an external longitudinal magnetic field and the hyperfine interaction with the nuclear spin bath is considered in both the ground and excited (trion) states of the quantum dots. We analyze how the spin inertia signal depends on the magnetic field (polarization recovery) and on the modulation frequency of the helicity of the pump pulses as well as on their power and detuning. In particular, we elaborate how approaching the saturation limit of the spin polarization influences the measurements. The quantitative description of spin inertia measurements will enable the determination of the parameters of spin dynamics such as the spin relaxation times in the ground and excited states and the parameters of the hyperfine interaction. Finally, we predict the emergence of resonant spin amplification due to the transverse components of the nuclear spin fluctuations, which manifests itself as oscillations of the spin polarization as a function of the longitudinal magnetic field.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Spin inertia of resident and photoexcited carriers in singly charged quantum dots
    Zhukov, E. A.
    Kirstein, E.
    Smirnov, D. S.
    Yakovlev, D. R.
    Glazov, M. M.
    Reuter, D.
    Wieck, A. D.
    Bayer, M.
    Greilich, A.
    PHYSICAL REVIEW B, 2018, 98 (12)
  • [32] Spontaneous and resonant lifting of the spin blockade in nanowire quantum dots
    Nowak, M. P.
    Szafran, B.
    PHYSICAL REVIEW B, 2014, 89 (20):
  • [33] Correlation and spin polarization in quantum dots:: Local spin density functional theory revisited
    Borgh, M
    Toreblad, M
    Koskinen, M
    Manninen, M
    Åberg, S
    Reimann, SM
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 105 (06) : 817 - 825
  • [34] Spin polarization of carriers in resonant tunneling devices containing InAs self-assembled quantum dots
    Araujo e Nobrega, J.
    Orsi Gordo, V.
    Galeti, H. V. A.
    Galvao Gobato, Y.
    Brasil, M. J. S. P.
    Taylor, D.
    Orlita, M.
    Henini, M.
    SUPERLATTICES AND MICROSTRUCTURES, 2015, 88 : 574 - 581
  • [35] Nuclear spin pumping under resonant optical excitation in a quantum dot
    Makhonin, M. N.
    Tartakovskii, A. I.
    Ebbens, A.
    Skolnick, M. S.
    Russell, A.
    Fal'ko, V. I.
    Hopkinson, M.
    APPLIED PHYSICS LETTERS, 2008, 93 (07)
  • [36] Strongly anisotropic spin relaxation revealed by resonant spin amplification in (110) GaAs quantum wells
    Griesbeck, M.
    Glazov, M. M.
    Sherman, E. Ya.
    Schuh, D.
    Wegscheider, W.
    Schueller, C.
    Korn, T.
    PHYSICAL REVIEW B, 2012, 85 (08):
  • [37] Optical pumping and reversal of hole spin in InAs/GaAs quantum dots
    Fras, F.
    Eble, B.
    Bernardot, F.
    Testelin, C.
    Chamarro, M.
    Miard, A.
    Lemaitre, A.
    APPLIED PHYSICS LETTERS, 2012, 100 (01)
  • [38] Dynamical Self-Quenching of Spin Pumping into Double Quantum Dots
    Brataas, Arne
    Rashba, Emmanuel I.
    PHYSICAL REVIEW LETTERS, 2012, 109 (23)
  • [39] AMPLIFICATION OF SPIN WAVES BY PHONON PUMPING
    HAAS, CW
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1966, 27 (10) : 1687 - &
  • [40] Resonant spin and valley polarization in ferromagnetic silicene quantum well
    Wang, Yu
    APPLIED PHYSICS LETTERS, 2014, 104 (03)