Minimum dissipation principle in stationary non-equilibrium states

被引:43
|
作者
Bertini, L
De Sole, A
Gabrielli, D
Jona-Lasinio, G
Landim, C
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Univ Aquila, Dipartimento Matemat, I-67100 Laquila, Italy
[4] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy
[6] Inst Matematica Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
[7] Univ Rouen, CNRS, UMR 6085, F-76128 Mont St Aignan, France
关键词
stationary non equilibrium states; lattice gases; minimum dissipation; optimal control;
D O I
10.1023/B:JOSS.0000037220.57358.94
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize to non equilibrium states Onsager's minimum dissipation principle. We also interpret this principle and some previous results in terms of optimal control theory. Entropy production plays the role of the cost necessary to drive the system to a prescribed macroscopic configuration.
引用
收藏
页码:831 / 841
页数:11
相关论文
共 50 条
  • [41] Mesoscopic thermodynamics of stationary non-equilibrium states -: art. no. 35
    Santamaría-Holek, I
    Rubí, JM
    Pérez-Madrid, A
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [42] PHASE-TRANSITIONS IN STATIONARY NON-EQUILIBRIUM STATES OF MODEL LATTICE SYSTEMS
    KATZ, S
    LEBOWITZ, JL
    SPOHN, H
    PHYSICAL REVIEW B, 1983, 28 (03): : 1655 - 1658
  • [43] Minimum time connection between non-equilibrium steady states: the Brownian gyrator
    Patron, A.
    Plata, C. A.
    Prados, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (49)
  • [44] STATIONARY STAGE OF NON-EQUILIBRIUM DYNAMICS OF ADSORPTION
    ZOLOTARE.PP
    KALINICH.AI
    DOKLADY AKADEMII NAUK SSSR, 1971, 199 (05): : 1098 - &
  • [45] NON-EQUILIBRIUM STATIONARY MODES OF BOUNDARY FRICTION
    Lyashenko, I. A.
    Metlov, L. S.
    Khomenko, A. V.
    Chepulskyi, S. N.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2011, 3 (03) : 59 - 69
  • [46] Stationary Non-equilibrium Solutions for Coagulation Systems
    Marina A. Ferreira
    Jani Lukkarinen
    Alessia Nota
    Juan J. L. Velázquez
    Archive for Rational Mechanics and Analysis, 2021, 240 : 809 - 875
  • [47] Stationary Non-equilibrium Solutions for Coagulation Systems
    Ferreira, Marina A.
    Lukkarinen, Jani
    Nota, Alessia
    Velazquez, Juan J. L.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) : 809 - 875
  • [48] A Non-equilibrium Geometric No-arbitrage Principle
    Wanxiao Tang
    Peibiao Zhao
    Methodology and Computing in Applied Probability, 2023, 25
  • [49] The Principle of Minimal Resistance in Non-equilibrium Thermodynamics
    Roberto Mauri
    Foundations of Physics, 2016, 46 : 393 - 408
  • [50] A Non-equilibrium Geometric No-arbitrage Principle
    Tang, Wanxiao
    Zhao, Peibiao
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (03)