Oscillations and hysteresis: from simple harmonic oscillator and unusual unbounded increasing amplitude phenomena to the van der Pol oscillator and chaos control

被引:0
|
作者
Semenov, Mikhail E. [1 ,2 ,3 ,4 ]
Reshetova, Olga O. [1 ]
Meleshenko, Peter A. [1 ,5 ]
Klinskikh, Alexander F. [6 ]
机构
[1] Voronezh State Univ, Digital Technol Dept, Voronezh, Russia
[2] Voronezh State Univ, Math Dept, Voronezh, Russia
[3] Russia Acad Sci, Geophys Survey, Obninsk, Russia
[4] Zhukovsky Gagarin Air Force Acad, Meteorol Dept, Voronezh, Russia
[5] Adv Res Fdn, Target Search Lab Groundbreaking Radio Commun Tec, Voronezh, Russia
[6] Voronezh State Univ, Gen Phys Dept, Voronezh, Russia
关键词
hysteresis; Bouc-Wen model; van der Pol oscillator; regular and chaotic dynamics; synchronisation; MODEL; VIBRATION; SYSTEMS;
D O I
10.1504/IJESMS.2020.111274
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we investigate various oscillating systems under hysteretic action. For a simple harmonic oscillator under hysteretic force an unusual unbounded increasing amplitude phenomena (growing rate for the amplitude is proportional to square root of time) are obtained and discussed. For a system of coupled van der Pol oscillators (taking into account the hysteretic coupling) we investigate various dynamic regimes (both regular and chaotic) and show that the hysteresis in the link between two van der Pol oscillators may serve as an effective mechanism for chaos control. Also we consider the effect of hysteresis on synchronisation processes in this system.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [21] Probability distribution characteristics of chaos in a simple population model and the Bonhoeffer van der Pol oscillator
    Parthasarathy, S
    Rajasekar, S
    PHYSICAL REVIEW E, 1998, 58 (05): : 6839 - 6842
  • [22] Suppression of hysteresis in a forced van der Pol-Duffing oscillator
    Fahsi, Abdelhak
    Belhaq, Mohamed
    Lakrad, Faouzi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) : 1609 - 1616
  • [23] Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis
    Appelbe, B.
    Rachinskii, D.
    Zhezherun, A.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (2-3) : 301 - 304
  • [24] Chaos in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 603 - 608
  • [25] Stable oscillations and Devil's staircase in the Van der Pol oscillator
    Gilbert, T
    Gammon, RW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (01): : 155 - 164
  • [26] Chaotic van der Pol Oscillator Control Algorithm Comparison
    Ribordy, Lauren
    Sands, Timothy
    DYNAMICS, 2023, 3 (01): : 202 - 213
  • [27] Analysis of torus breakdown into chaos in a constraint Duffing van der Pol oscillator
    Sekikawa, Munehisa
    Inaba, Naohiko
    Tsubouchi, Takashi
    Aihara, Kazuyuki
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (04): : 1051 - 1068
  • [28] On the route to strangeness without chaos in the quasiperiodically forced van der Pol oscillator
    Pokorny, P
    Schreiber, I
    Marek, M
    CHAOS SOLITONS & FRACTALS, 1996, 7 (03) : 409 - 424
  • [29] Delay effect on the relaxation oscillations of a van der Pol oscillator with delayed feedback
    Zheng, Yuanguang
    Huang, Chengdai
    Wang, Zaihua
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (01): : 148 - 157
  • [30] Nested mixed-mode oscillations in the forced van der Pol oscillator
    Inaba, Naohiko
    Okazaki, Hideaki
    Ito, Hidetaka
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133