Poly(alizarin red S) modified glassy carbon electrode for square wave adsorptive stripping voltammetric determination of metronidazole in tablet formulation

被引:9
|
作者
Dawit, Mulugeta [1 ]
Turbale, Mahilet [2 ]
Moges, Amsalu [3 ]
Amare, Meareg [4 ]
机构
[1] Debre Tabor Univ, Debra Tabor, Ethiopia
[2] Samara Univ, Semera, Ethiopia
[3] Debre Markos Univ, Debre Markos, Ethiopia
[4] Bahir Dar Univ, Bahir Dar, Ethiopia
来源
PLOS ONE | 2020年 / 15卷 / 12期
关键词
ELECTROCHEMICAL DETERMINATION; ANTIBIOTICS; ACID;
D O I
10.1371/journal.pone.0244115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Potentiodynamically fabricated poly(alizarin red s) modified GCE was characterized using CV and EIS techniques. In contrast to the cyclic voltammetric response of the unmodified GCE for metronidazole, an irreversible reduction peak with three-folds of current enhancement and reduced overpotential at the poly(alizarin red s) modified GCE showed the catalytic effect of the modifier towards reduction of metronidazole. While observed peak potential shift with increasing pH (4.0-10.0) indicated the involvement of protons during the reduction of metronidazole, peak potential shift with scan rate (20-300 mV s(-1)) confirmed the irreversibility of the reduction reaction of metronidazole at the modified GCE. A better correlation for the dependence of peak current on scan rate (r(2) = 0.9883) than on square root of scan rate (r(2) = 0.9740) supplemented by slope value of 0.38 for plot of log(current) versus log(scan rate) indicated the reduction reaction of metronidazole at the surface of the modified electrode was predominantly adsorption controlled. Under the optimized method and solution parameters, reductive current response of tablet sample showed linear dependence on spiked standard concentration in a wide range (0-125 mu M) with excellent determination coefficient r(2), LoD and LoQ of 0.9991, 0.38, and 1.25 mu M, respectively. Spike recovery of 97.9% and interference recovery of 96.2-97.5% in the presence of 21.28 and 31.92 mu M of uric acid and ascorbic acid validated the applicability of the present method for determination of metronidazole in tablet formulation. The metronidazole content of the tested tablet formulation using standard addition method was found to be 97.6% of what is claimed by the tablet manufacturer making the developed method an excellent potential candidate for its applicability to determine metronidazole in real samples with complex matrix.
引用
收藏
页数:17
相关论文
共 50 条