Branch continuation inside the essential spectrum for the nonlinear Schrodinger equation

被引:11
|
作者
Evequoz, Gilles [1 ]
Weth, Tobias [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Mathemat, Robert Mayer Str 10, D-60629 Frankfurt, Germany
关键词
Nonlinear Schrodinger equation; Nonlinear Helmholtz equation; Global branch of solutions; A priori bounds; Leray-Schauder fixed-point index; SEMILINEAR ELLIPTIC PROBLEMS; SCALAR FIELD-EQUATIONS; POSITIVE SOLUTIONS; BIFURCATION; EXISTENCE; THEOREMS;
D O I
10.1007/s11784-016-0362-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear stationary Schrodinger equation -Delta u - lambda u = Q(x)vertical bar u vertical bar(p-2) u, in R-N in the case where N >= 3, p is a superlinear, subcritical exponent, Q is a bounded, nonnegative and nontrivial weight function with compact support in R-N and lambda is an element of R is a parameter. Under further restrictions either on the exponent p or on the shape of Q, we establish the existence of a continuous branch C of nontrivial solutions to this equation which intersects {lambda} x L-s(R-N) for every lambda is an element of (-infinity, lambda(Q)) and s > 2N/N-1. Here, lambda(Q) > 0 is an explicit positive constant which only depends on N and diam(supp Q). In particular, the set of values lambda along the branch enters the essential spectrum of the operator -Delta.
引用
收藏
页码:475 / 502
页数:28
相关论文
共 50 条
  • [41] ON THE NONLINEAR SCHRODINGER-EQUATION
    DATSEFF, AB
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1985, : 739 - 740
  • [42] Derivation of Nonlinear Schrodinger Equation
    Wu, Xiang-Yao
    Zhang, Bai-Jun
    Liu, Xiao-Jing
    Xiao, Li
    Wu, Yi-Heng
    Wang, Yan
    Wang, Qing-Cai
    Cheng, Shuang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (10) : 2437 - 2445
  • [43] Bright Soliton Solution of the Nonlinear Schrodinger Equation: Fourier Spectrum and Fundamental Characteristics
    Karjanto, Natanael
    MATHEMATICS, 2022, 10 (23)
  • [44] A stochastic nonlinear Schrodinger equation
    Debussche, A
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 292 - 295
  • [45] Eigenvalues of the nonlinear Schrodinger equation
    Geltman, S.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [46] Solving the nonlinear Schrodinger equation
    Forestieri, E
    Secondini, M
    OPTICAL COMMUNICATION THEORY AND TECHNIQUES, 2005, : 3 - +
  • [47] On the forced nonlinear Schrodinger equation
    Shull, R
    Bu, C
    Wang, HF
    Chu, ML
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 626 - 630
  • [48] Comments on the nonlinear Schrodinger equation
    Davidson, MP
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2001, 116 (11): : 1291 - 1295
  • [49] On a deformation of the nonlinear Schrodinger equation
    Arnaudon, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (12)
  • [50] Symmetries of the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (04): : 603 - 618