Machine learning modeling for the prediction of materials energy

被引:5
|
作者
Mouzai, Meriem [1 ]
Oukid, Saliha [1 ]
Mustapha, Aouache [2 ]
机构
[1] Univ Blida 1, LRDSI Lab, Fac Sci, BP 270, Blida, Algeria
[2] Ctr Dev Technol Avancees CDTA, Div Telecom, POB 17, Algiers 16303, Algeria
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 20期
关键词
Artificial intelligence; Deep learning; Crystal structure feature descriptors; Energy prediction; SUPPORT VECTOR MACHINE; CRYSTAL-STRUCTURE; REGRESSION;
D O I
10.1007/s00521-022-07416-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning (ML) is a fast-evolving field of artificial intelligence that has been applied in many domains due to the increasing availability of computerized databases, including materials science; for instance, validating crystal descriptors for energy prediction poses difficult problems. This work investigates machine learning models to substitute the laboratory crystal energy prediction using two- and three-body distribution functions as structural and atomic descriptors. To achieve this, ML algorithms were used notably ElasticNet, Bayesian Ridge, Random Forest, Support Vector Machine, and Deep Neural Networks to model structural descriptors. Moreover, a non-conventional Deep Neural Networks topology was developed and implemented to model atomic descriptors. Five-fold cross-validation procedure was performed on each model; quality assessment metrics were else used for testing and evaluation in order to identify the most robust descriptors. Finally, the best result of energy prediction was achieved by combining both two- and three-body atomic distribution functions.
引用
收藏
页码:17981 / 17998
页数:18
相关论文
共 50 条
  • [31] Pushing the frontiers of materials modeling and discovery with machine learning
    Sankaranarayanan, Subramanian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [32] Energy Model Machine (EMM) Instant Building Energy Prediction using Machine Learning
    Asl, Mohammad Rahmani
    Das, Subhajit
    Tsai, Barry
    Molloy, Ian
    Hauck, Anthony
    ECAADE 2017: SHARING OF COMPUTABLE KNOWLEDGE! (SHOCK!), VOL 2, 2017, : 277 - 286
  • [33] Machine Learning for Energy Load Prediction and its Interpretation
    Charytanowicz, Malgorzata
    Olwert, Anna
    Radziszewska, Weronika
    Jarnicka, Jolanta
    Gajowniczek, Krzysztof
    Zabkowski, Tomasz
    Brozyna, Jacek
    Mentel, Grzegorz
    Matejko, Grzegorz
    2022 IEEE 11th International Conference on Intelligent Systems, IS 2022, 2022,
  • [34] Photovoltaic Energy Prediction Using Machine Learning Techniques
    Surribas Sayago, Gonzalo
    David Fernandez-Rodriguez, Jose
    Dominguez, Enrique
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 577 - 587
  • [35] Machine Learning approach for Prediction of residual energy in batteries
    Jayakumar, T.
    Gowda, Natesh M.
    Sujatha, R.
    Bhukya, Shankar Nayak
    Padmapriya, G.
    Radhika, S.
    Mohanavel, V.
    Sudhakar, M.
    Sathyamurthy, Ravishankar
    ENERGY REPORTS, 2022, 8 : 756 - 764
  • [36] Prediction of Intramolecular Reorganization Energy Using Machine Learning
    Atahan-Evrenk, Sule
    Atalay, F. Betul
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (36): : 7855 - 7863
  • [37] Prediction of binding energy using machine learning approach
    Pandey, Bishnu
    Giri, Subash
    Pant, Rajan Dev
    Jalan, Muskan
    Chaudhary, Ashok
    Adhikari, Narayan Prasad
    AIP ADVANCES, 2024, 14 (10)
  • [38] Electrical Energy Consumption Prediction Using Machine Learning
    Stankoski, Simon
    Kiprijanovska, Ivana
    Ilievski, Igor
    Slobodan, Jovanovski
    Gjoreski, Hristijan
    ICT INNOVATIONS 2019: BIG DATA PROCESSING AND MINING, 2019, 1110 : 72 - 82
  • [39] Simulation and design of energy materials accelerated by machine learning
    Wang, Hongshuai
    Ji, Yujin
    Li, Youyong
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2020, 10 (01)
  • [40] Materials discovery through machine learning formation energy
    Peterson, Gordon G. C.
    Brgoch, Jakoah
    JOURNAL OF PHYSICS-ENERGY, 2021, 3 (02):