Gaddum's test for symmetric cones

被引:1
|
作者
Orlitzky, Michael [1 ]
机构
[1] Towson Univ, Dept Math, Towson, MD 21252 USA
关键词
Gaddum's test; Copositivity; Symmetric cone; Linear game; Cone programming; VARIATIONAL-INEQUALITIES; LINEAR TRANSFORMATIONS; JORDAN ALGEBRAS; P-PROPERTIES; OPERATORS;
D O I
10.1007/s10898-020-00960-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A real symmetric matrix A is copositive if < Ax, x > >= 0 for all x in the nonnegative orthant. Copositive programming gained fame when Burer showed that hard nonconvex problems can be formulated as completely-positive programs. Alas, the power of copositive programming is offset by its difficulty: simple questions like "is this matrix copositive?" have complicated answers. In 1958, Jerry Gaddum proposed a recursive procedure to check if a given matrix is copositive by solving a series of matrix games. It is easy to implement and conceptually simple. Copositivity generalizes to cones other than the nonnegative orthant. If K is a proper cone, then the linear operator L is copositive on K if < L ( x), x > >= 0 for all x in K. Little is known about these operators in general. We extend Gaddum's test to self-dual and symmetric cones, thereby deducing criteria for copositivity in those settings.
引用
收藏
页码:927 / 940
页数:14
相关论文
共 50 条
  • [41] Riesz Exponential Families on Symmetric Cones
    A. Hassairi
    S. Lajmi
    Journal of Theoretical Probability, 2001, 14 : 927 - 948
  • [42] Riesz exponential families on symmetric cones
    Hassairi, A
    Lajmi, S
    JOURNAL OF THEORETICAL PROBABILITY, 2001, 14 (04) : 927 - 948
  • [43] SYMMETRIC PRODUCTS AS CONES, PEANO CURVES
    Illanes, Alejandro
    Martinez-de-la-Vega, Veronica
    Michalik, Daria
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1187 - 1195
  • [44] Applications of geometric means on symmetric cones
    Lim, Y
    MATHEMATISCHE ANNALEN, 2001, 319 (03) : 457 - 468
  • [45] Applications of geometric means on symmetric cones
    Yongdo Lim
    Mathematische Annalen, 2001, 319 : 457 - 468
  • [46] Multiobjective symmetric duality involving cones
    Suneja, SK
    Aggarwal, S
    Davar, S
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 141 (03) : 471 - 479
  • [47] On normality of cones over symmetric varieties
    Chirivi, Rocco
    de Concini, Corrado
    Maffei, Andrea
    TOHOKU MATHEMATICAL JOURNAL, 2006, 58 (04) : 599 - 616
  • [48] Analysis of Control Systems on Symmetric Cones
    Papusha, Ivan
    Murray, Richard M.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 3971 - 3976
  • [49] On some Finsler structures of symmetric cones
    Bae, H
    Lim, Y
    FORUM MATHEMATICUM, 2001, 13 (05) : 629 - 639
  • [50] Invariant Differential Operators on Symmetric Cones and Hermitian Symmetric Spaces
    Genkai Zhang
    Acta Applicandae Mathematica, 2002, 73 : 79 - 94