A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective

被引:207
|
作者
Shakarami, Ali [1 ]
Ghobaei-Arani, Mostafa [1 ]
Shahidinejad, Ali [1 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Qom Branch, Qom, Iran
关键词
Computation offloading; Mobile edge computing; Machine learning; Reinforcement learning; Supervised learning; Unsupervised learning; RESOURCE-MANAGEMENT; INTERNET; THINGS; IOT; ASSIGNMENT;
D O I
10.1016/j.comnet.2020.107496
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid developments in emerging mobile technologies, utilizing resource-hungry mobile applications such as media processing, online Gaming, Augmented Reality (AR), and Virtual Reality (VR) play an essential role in both businesses and entertainments. To soften the burden of such complexities incurred by fast developments of such serving technologies, distributed Mobile Edge Computing (MEC) has been developed, aimed at bringing the computation environments near the end-users, usually in one hop, to reach predefined requirements. In the literature, offloading approaches are developed to connect the computation environments to mobile devices by transferring resource-hungry tasks to the near servers. Because of some rising problems such as inherent software and hardware heterogeneity, restrictions, dynamism, and stochastic behavior of the ecosystem, the computation offloading issues consider as the essential challenging problems in the MEC environment. However, to the best of the author's knowledge, in spite of its significance, in machine learning-based (ML-based) computation offloading mechanisms, there is not any systematic, comprehensive, and detailed survey in the MEC environment. In this paper, we provide a review on the ML-based computation offloading mechanisms in the MEC environment in the form of a classical taxonomy to identify the contemporary mechanisms on this crucial topic and to offer open issues as well. The proposed taxonomy is classified into three main fields: Reinforcement learning-based mechanisms, supervised learning-based mechanisms, and unsupervised learning-based mechanisms. Next, these classes are compared with each other based on the essential features such as performance metrics, case studies, utilized techniques, and evaluation tools, and their advantages and weaknesses are discussed, as well. Finally, open issues and uncovered or inadequately covered future research challenges are argued, and the survey is concluded.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks
    Huang, Liang
    Feng, Xu
    Feng, Anqi
    Huang, Yupin
    Qian, Li Ping
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (03): : 1123 - 1130
  • [22] Task offloading in edge computing for machine learning-based smart healthcare
    Aazam, Mohammad
    Zeadally, Sherali
    Flushing, Eduardo Feo
    COMPUTER NETWORKS, 2021, 191
  • [23] Learning-Based Inter-Satellite Computation Offloading in Satellite Edge Computing
    Shi, Jinming
    Lv, Dedong
    Chen, Te
    Li, Yinqiao
    2024 9TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, ICSIP, 2024, : 476 - 480
  • [24] Reinforcement learning-based computation offloading in edge computing: Principles, methods, challenges
    Luo, Zhongqiang
    Dai, Xiang
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 108 : 89 - 107
  • [25] Computation Offloading for Mobile Edge Computing: A Deep Learning Approach
    Yu, Shuai
    Wang, Xin
    Langar, Rami
    2017 IEEE 28TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2017,
  • [26] A Survey of Computation Offloading in Edge Computing
    Zheng, Tao
    Wan, Jian
    Zhang, Jilin
    Jiang, Congfeng
    Jia, Gangyong
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2020, : 12 - 17
  • [27] A survey on computation offloading in edge systems: From the perspective of deep reinforcement learning approaches
    Peng, Peng
    Lin, Weiwei
    Wu, Wentai
    Zhang, Haotong
    Peng, Shaoliang
    Wu, Qingbo
    Li, Keqin
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [28] Deep reinforcement learning-based computation offloading and resource allocation in security-aware mobile edge computing
    Ke, H. C.
    Wang, H.
    Zhao, H. W.
    Sun, W. J.
    WIRELESS NETWORKS, 2021, 27 (05) : 3357 - 3373
  • [29] Deep reinforcement learning-based computation offloading and resource allocation in security-aware mobile edge computing
    H. C. Ke
    H. Wang
    H. W. Zhao
    W. J. Sun
    Wireless Networks, 2021, 27 : 3357 - 3373
  • [30] Survey on computation offloading in UAV-Enabled mobile edge computing
    Huda, S. M. Asiful
    Moh, Sangman
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 201