Extremal Polygonal Cacti for Wiener Index and Kirchhoff Index

被引:0
|
作者
Zeng, Mingyao [1 ]
Xiao, Qiqi [1 ]
Tang, Zikai [1 ]
Deng, Hanyuan [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Minist Educ, Key Lab Comp & Stochast Math, Changsha 410081, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Wiener index; Kirchhoff index; Cactus; Extremal graph; RESISTANCE-DISTANCE; POLYPHENYL; GRAPHS; SPIRO; MINIMUM;
D O I
10.22052/ijmc.2020.225271.1497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For a connected graph G, the Wiener index W(G)) of G is the sum of the distances of all pairs of vertices, the Kirchhoff index Kf(G) of G is the sum of the resistance distances of all pairs of vertices. A k-G polygonal cactus is a connected graph in which the length of every cycle is k and any two cycles have at most one common vertex. In this paper, we give the maximum and minimum values of the Wiener index and the Kirchhoff index for all k-polygonal cacti with n cycles and determine the corresponding extremal graphs, generalize results of spiro hexagonal chains with n hexagons. (C) 2020 University of Kashan Press. All rights reserved
引用
收藏
页码:201 / 211
页数:11
相关论文
共 50 条
  • [31] The degree Kirchhoff index of fully loaded unicyclic graphs and cacti
    Feng, Lihua
    Liu, Weijun
    Yu, Guihai
    Li, Shudong
    UTILITAS MATHEMATICA, 2014, 95 : 149 - 159
  • [32] Chain Hexagonal Cacti: Extremal With Respect To The Eccentric Connectivity Index
    Yarahmadi, Zahra
    Doslic, Tomislav
    Moradi, Sirous
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 4 (01): : 123 - 136
  • [33] The second-minimum Wiener index of cacti with given cycles
    Deng, Hanyuan
    Keerthi Vasan, G. C.
    Balachandran, S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (03)
  • [34] Extremal Polygonal Arrays for the Merrifield-Simmons Index
    De Ita Luna, Guillermo
    Raymundo Marcial-Romero, J.
    Hernandez-Servin, J. A.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 81 (02) : 505 - 522
  • [35] Extremal values on the Kirchhoff index of the line graph of trees
    Sardar, Muhammad Shoaib
    Xu, Shou-Jun
    Pan, Xiang-Feng
    KUWAIT JOURNAL OF SCIENCE, 2025, 52 (01)
  • [36] Extremal Wiener Index of Trees with All Degrees Odd
    Lin, Hong
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (01) : 287 - 292
  • [37] On the extremal Wiener polarity index of trees with a given diameter
    Deng, Hanyuan
    Xiao, Hui
    Tang, Fenfang
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 257 - 264
  • [38] The structure of graphs with extremal hyper-Wiener index
    Liu, Hechao
    You, Lihua
    Huang, Yufei
    FILOMAT, 2024, 38 (16) : 5863 - 5874
  • [39] Extremal Wiener Index of Trees with Prescribed Path Factors
    Lin, Hong
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 83 (01) : 85 - 94
  • [40] Extremal Trees with Respect to Bi-Wiener Index
    Chen, Ximei
    Karimi, Sasan
    Xu, Kexiang
    Lewinter, Marty
    Choi, Eric
    Delgado, Anthony
    Doslic, Tomislav
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (05)