CRISPR technologies for precise epigenome editing

被引:226
|
作者
Nakamura, Muneaki [1 ]
Gao, Yuchen [1 ,2 ,5 ]
Dominguez, Antonia A. [1 ,6 ]
Qi, Lei S. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Canc Biol Program, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[4] Stanford Univ, Stanford ChEM H Inst, Stanford, CA 94305 USA
[5] Mammoth Biosci, San Francisco, CA USA
[6] Sana Biotechnol, San Francisco, CA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DNA METHYLATION; REGULATORY ELEMENTS; GENE-EXPRESSION; CHROMATIN; ENHANCERS; IDENTIFICATION; ACTIVATION; THOUSANDS; BINDING; TARGET;
D O I
10.1038/s41556-020-00620-7
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Qi and colleagues review CRISPR-based epigenome engineering technologies to modulate histone and DNA modifications and to perturb DNA and RNA regulatory elements and chromatin organization. The epigenome involves a complex set of cellular processes governing genomic activity. Dissecting this complexity necessitates the development of tools capable of specifically manipulating these processes. The repurposing of prokaryotic CRISPR systems has allowed for the development of diverse technologies for epigenome engineering. Here, we review the state of currently achievable epigenetic manipulations along with corresponding applications. With future optimization, CRISPR-based epigenomic editing stands as a set of powerful tools for understanding and controlling biological function.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 50 条
  • [21] Next-generation CRISPR technology for genome, epigenome and mitochondrial editing
    Lau, Cia-Hin
    Liang, Qing-Le
    Zhu, Haibao
    TRANSGENIC RESEARCH, 2024, 33 (05) : 323 - 357
  • [22] Development of CRISPR-Cas9 repressors for targeted epigenome editing
    Kantor, Ariel
    Salman, Ahmed
    McClements, Michelle E.
    MacLaren, Robert E.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [23] Optimizing Nonviral CRISPR Epigenome Editing in Human Mesenchymal Stem Cells
    Hamann, Andrew
    Broad, Kelly
    Pannier, Angela K.
    MOLECULAR THERAPY, 2022, 30 (04) : 101 - 101
  • [24] Transgenic mice for in vivo epigenome editing with CRISPR-based systems
    Gemberling, Matthew
    Siklenka, Keith
    Rodriguez, Erica
    Tonn-Eisinger, Katherine R.
    Barrera, Alejandro
    Liu, Fang
    Kantor, Ariel
    Li, Liqing
    Cigliola, Valentina
    Hazlett, Mariah F.
    Williams, Courtney
    Bartelt, Luke C.
    Madigan, Victoria J.
    Bodle, Josephine
    Daniels, Heather
    Rouse, Douglas C.
    Hilton, Isaac B.
    Asokan, Aravind
    Ciofani, Maria
    Poss, Kenneth D.
    Reddy, Timothy E.
    West, Anne E.
    Gersbach, Charles A.
    NATURE METHODS, 2021, 18 (08) : 965 - +
  • [25] Concurrent genome and epigenome editing by CRISPR-mediated sequence replacement
    Alexander, Jes
    Findlay, Gregory M.
    Kircher, Martin
    Shendure, Jay
    BMC BIOLOGY, 2019, 17 (01)
  • [26] Concurrent genome and epigenome editing by CRISPR-mediated sequence replacement
    Jes Alexander
    Gregory M. Findlay
    Martin Kircher
    Jay Shendure
    BMC Biology, 17
  • [27] Evolution of CRISPR/Cas Systems for Precise Genome Editing
    Hryhorowicz, Magdalena
    Lipinski, Daniel
    Zeyland, Joanna
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [28] Unlocking CRISPR technology for precise and efficient genome editing
    Cereseto, A.
    FEBS OPEN BIO, 2021, 11 : 31 - 31
  • [29] Recent advances in CRISPR technologies for genome editing
    Myeonghoon Song
    Taeyoung Koo
    Archives of Pharmacal Research, 2021, 44 : 537 - 552
  • [30] Recent advances in CRISPR technologies for genome editing
    Song, Myeonghoon
    Koo, Taeyoung
    ARCHIVES OF PHARMACAL RESEARCH, 2021, 44 (06) : 537 - 552