Cospectrality of graphs

被引:11
|
作者
Abdollahi, Alireza [1 ,2 ]
Oboudi, Mohammad Reza [1 ,2 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan 8174673441, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Spectra of graphs; Measures on spectra of graphs; Adjacency matrix of a graph;
D O I
10.1016/j.laa.2014.02.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Richard Brualdi proposed in Stevanivic (2007) [6] the following problem: (Problem AWGS.4) Let G(n) and G(n)' be two nonisomorphic graphs on n vertices with spectra lambda(1) >= lambda(2) >= ... >= lambda(n) and lambda(1)' >= lambda(2)' >= ... >= lambda(n)', respectively. Define the distance between the spectra of G(n) and G(n)' as lambda(G(n), G(n)') = Sigma(n)(i=1)(lambda(i) - lambda(i)')(2) (or use Sigma(n)(i=1)vertical bar lambda(i) - lambda(i)'vertical bar). Define the cospectrality of G(n) by cs(G(n)) = min{lambda(G(n), G(n)'): G(n)' not isomorphic to G(n)}. Let cs(n) = max{cs(G(n)): G(n) a graph on n vertices}. Problem A. Investigate cs(G(n)) for special classes of graphs. Problem B. Find a good upper bound on cs(n). In this paper we study Problem A and determine the cospectrality of certain graphs by the Euclidian distance. Let K-n denote the complete graph on n vertices, nK(1) denote the null graph on n vertices and K-2 + (n - 2)K-1 denote the disjoint union of the K-2 with n - 2 isolated vertices, where n >= 2. In this paper we find cs(K-n), cs(nK(1)), cs(K-2 + (n - 2)K-1) (n >= 2) and cs(K-n,K-n). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 50 条
  • [31] Maximal outerplanar graphs as chordal graphs, path-neighborhood graphs, and triangle graphs
    Laskar, R. C.
    Mulder, Henry Martyn
    Novick, B.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 52 : 185 - 195
  • [32] EMBEDDING GRAPHS INTO COLORED GRAPHS
    HAJNAL, A
    KOMJATH, P
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (01) : 395 - 409
  • [33] Bipartite graphs that are not circle graphs
    Bouchet, A
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (03) : 809 - +
  • [34] COMAXIMAL GRAPHS AND THEIR COMPLEMENTARY GRAPHS
    Sato, Junro
    Baba, Kiyoshi
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 21 (02): : 169 - 177
  • [35] CLIQUE GRAPHS AND HELLY GRAPHS
    BANDELT, HJ
    PRISNER, E
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 51 (01) : 34 - 45
  • [36] On graphs with complete multipartite μ-graphs
    Jurisic, Aleksandar
    Munemasa, Akihiro
    Tagami, Yuki
    DISCRETE MATHEMATICS, 2010, 310 (12) : 1812 - 1819
  • [37] From Graphs to Spatial Graphs
    Dale, M. R. T.
    Fortin, M-J
    ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 41, 2010, 41 : 21 - 38
  • [38] Marked graphs and Euler graphs
    SIVET Coll, Madras, India
    Microelectron Reliab, 2 (225-235):
  • [39] ON POWERS OF GRAPHS AND HAMILTONIAN GRAPHS
    CHARTRAN.GT
    KAPOOR, SF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 150 - &
  • [40] Congruent graphs and the connectivity of graphs
    Whitney, H
    AMERICAN JOURNAL OF MATHEMATICS, 1932, 54 : 150 - 168