Current density reconstruction with multi-scale grid approach

被引:0
|
作者
Han, JM [1 ]
Lee, IB [1 ]
Hahm, JH [1 ]
Kim, YJ [1 ]
Park, KS [1 ]
机构
[1] Seoul Natl Univ, Interdisciplinary Program Biomed Engn, Seoul, South Korea
关键词
inverse problem; electroencephalograhpy; current dipole; grid;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The computational cost of solving electroencephal o-graphic (EEG) or magnetoencephalographic (MEG) inverse problem is extremely high due to the inversion of a matrix configured with a priori information. The matrix size is proportional to the number of points in source grid. We present a multi-scale grid approach to solve the inverse problem using FOCUSS algorithm which is one of the current density reconstruction (CDR) methods and tested the algorithm with simulated EEG data. The multi-scale grid approach dramatically reduces grid points without loss of the resolution.
引用
收藏
页码:921 / 922
页数:2
相关论文
共 50 条
  • [21] An Multi-scale Edge Detection Approach
    Chen Zhigang
    Cui Yueli
    Chen Aihua
    INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 1616 - 1620
  • [22] A multi-scale approach for seismic tomography
    Wang, B
    Braile, LW
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL II, 1996, : 713 - 716
  • [23] A Multi-Scale Approach to Computational Photonics
    Quandt, A.
    Warmbier, R.
    Manyali, G.
    2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2012, : 408 - 411
  • [24] A Langevin approach to multi-scale modeling
    Hirvijoki, Eero
    PHYSICS OF PLASMAS, 2018, 25 (04)
  • [25] Multi-Scale and Multi-Grid Finite Element Analysis of Concrete
    Pearce, C. J.
    Kaczmarczyk, L.
    TRENDS IN COMPUTATIONAL STRUCTURES TECHNOLOGY, 2008, : 75 - 96
  • [26] Multi-scale approach for the prediction of atomic scale properties
    Grisafi, Andrea
    Nigam, Jigyasa
    Ceriotti, Michele
    CHEMICAL SCIENCE, 2021, 12 (06) : 2078 - 2090
  • [27] A multi-scale supply operation of grid-connected micro-grid
    Wada C.
    Takayama S.
    Susuki Y.
    Ishigame A.
    Deguchi K.
    Konishi K.
    Ishizuka D.
    Tanaka K.
    IEEJ Transactions on Power and Energy, 2020, 140 (03) : 166 - 175
  • [28] Multi-scale conditional reconstruction generative adversarial network
    Chen, Yanming
    Xu, Jiahao
    An, Zhulin
    Zhuang, Fuzhen
    IMAGE AND VISION COMPUTING, 2024, 141
  • [29] Automatic reconstruction of neural morphologies with multi-scale tracking
    Choromanska, Anna
    Chang, Shih-Fu
    Yuste, Rafael
    FRONTIERS IN NEURAL CIRCUITS, 2012, 6
  • [30] Multi-scale digital holographic reconstruction with deep learning
    Wang, Huaying
    Li, Qiwen
    Wang, Shuo
    Men, Gaofu
    APPLIED OPTICS, 2025, 64 (07)