Finding Hamiltonian cycles on incrementally extensible hypercube graphs
被引:0
|
作者:
Keh, HC
论文数: 0引用数: 0
h-index: 0
Keh, HC
Chou, PY
论文数: 0引用数: 0
h-index: 0
Chou, PY
Lin, JC
论文数: 0引用数: 0
h-index: 0
Lin, JC
机构:
来源:
HIGH PERFORMANCE COMPUTING ON THE INFORMATION SUPERHIGHWAY - HPC ASIA '97, PROCEEDINGS
|
1997年
关键词:
D O I:
10.1109/HPC.1997.592174
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
The existence of a Hamiltonian cycle is the premise of usages in an interconnection network. A novel interconnection network, the incrementally Extensible Hypercube (IEH) graph, has been proposed recently. The IEH graphs are derived from hypercubes and also retain most parts of properties in hypercubes. Unlike hypercubes without incrementally extensibility, IEH graphs can be constructed in any number of nodes. In this paper, we present an algorithm to find a Hamiltonian cycle or path and prove that there exists a Hamiltonian cycle in all of IEH graphs except for those containing exactly 2(n)-1 nodes.
机构:
Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, EnglandUniv Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
Girao, Antonio
Kittipassorn, Teeradej
论文数: 0引用数: 0
h-index: 0
机构:
Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok 10330, ThailandUniv Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
Kittipassorn, Teeradej
Narayanan, Bhargav
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USAUniv Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England