Finding Hamiltonian cycles on incrementally extensible hypercube graphs

被引:0
|
作者
Keh, HC
Chou, PY
Lin, JC
机构
关键词
D O I
10.1109/HPC.1997.592174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The existence of a Hamiltonian cycle is the premise of usages in an interconnection network. A novel interconnection network, the incrementally Extensible Hypercube (IEH) graph, has been proposed recently. The IEH graphs are derived from hypercubes and also retain most parts of properties in hypercubes. Unlike hypercubes without incrementally extensibility, IEH graphs can be constructed in any number of nodes. In this paper, we present an algorithm to find a Hamiltonian cycle or path and prove that there exists a Hamiltonian cycle in all of IEH graphs except for those containing exactly 2(n)-1 nodes.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
  • [1] Incrementally extensible folded hypercube graphs
    Chang, HY
    Chen, RJ
    1998 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 1998, : 566 - 571
  • [2] Incrementally extensible folded hypercube graphs
    Chang, HY
    Chen, RJ
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2000, 16 (02) : 291 - 300
  • [3] Incrementally extensible hypercube networks and their fault tolerance
    Sur, S
    Srimani, PK
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (07) : 1 - 15
  • [4] Finding large cycles in Hamiltonian graphs
    Feder, Tomas
    Motwani, Rajeev
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (08) : 882 - 893
  • [5] Finding Large Cycles in Hamiltonian Graphs
    Feder, Tomas
    Motwani, Rajeev
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 166 - 175
  • [6] On Finding Hamiltonian Cycles in Barnette Graphs
    Bagheri, Behrooz Gh
    Fleischner, Herbert
    Feder, Tomas
    Subi, Carlos
    FUNDAMENTA INFORMATICAE, 2022, 188 (01) : 1 - 14
  • [7] FINDING HAMILTONIAN CYCLES IN CERTAIN PLANAR GRAPHS
    CIMIKOWSKI, RJ
    INFORMATION PROCESSING LETTERS, 1990, 35 (05) : 249 - 254
  • [8] Finding Hamiltonian Cycles in Circular Intuitionistic Fuzzy Graphs
    Traneva, Velichka
    Tranev, Stoyan
    Todorov, Venelin
    INTELLIGENT AND FUZZY SYSTEMS, INFUS 2024 CONFERENCE, VOL 1, 2024, 1088 : 503 - 512
  • [9] A fast parallel algorithm for finding Hamiltonian cycles in dense graphs
    Sarkozy, Gabor N.
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1611 - 1622
  • [10] Finding Hamiltonian cycles
    Altschuler, EL
    Lades, M
    Stong, R
    SCIENCE, 1996, 273 (5274) : 413 - 414