CONFLICT-FREE VERTEX CONNECTION NUMBER AT MOST 3 AND SIZE OF GRAPHS

被引:5
|
作者
Trung Duy Doan [1 ]
Schiermeyer, Ingo [2 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[2] Tech Univ Bergakad Freiberg, Inst Diskrete Math & Algebra, D-09596 Freiberg, Germany
关键词
vertex-colouring; conflict-free vertex-connection number; size of graph; PROPER CONNECTION; RAINBOW CONNECTION;
D O I
10.7151/dmgt.2211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A path in a vertex-coloured graph is called conflict-free if there is a colour used on exactly one of its vertices. A vertex-coloured graph is said to be conflict-free vertex-connected if any two distinct vertices of the graph are connected by a conflict-free vertex-path. The conflict-free vertex-connection number, denoted by vcf c(G), is the smallest number of colours needed in order to make G conflict-free vertex-connected. Clearly, vcfc(G) >= 2 for every connected graph on n >= 2 vertices. Our main result of this paper is the following. Let G be a connected graph of order n. If vertical bar E(G)vertical bar >= ((n-6)(2)) + 7, then vcf c(G) <= 3. We also show that vcfc(G) <= k + 3 - t for every connected graph G with k cut-vertices and t being the maximum number of cut-vertices belonging to a block of G.
引用
收藏
页码:617 / 632
页数:16
相关论文
共 50 条
  • [21] Conflict-free Connection Number and Independence Number of a Graph
    Wang, Jing
    Ji, Meng
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (02): : 278 - 286
  • [22] Conflict-free connection of trees
    Hong Chang
    Meng Ji
    Xueliang Li
    Jingshu Zhang
    Journal of Combinatorial Optimization, 2021, 42 : 340 - 353
  • [23] CONFLICT-FREE CONNECTIONS OF GRAPHS
    Czap, Julius
    Jendrol, Stanislav
    Valiska, Juraj
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 911 - 920
  • [24] Conflict-free connection of trees
    Chang, Hong
    Ji, Meng
    Li, Xueliang
    Zhang, Jingshu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (03) : 340 - 353
  • [25] Erdos-Gallai-type results for conflict-free connection of graphs
    Ji, Meng
    Li, Xueliang
    ARS COMBINATORIA, 2020, 152 : 45 - 50
  • [26] CONFLICT-FREE COLORING OF GRAPHS
    Abel, Zachary
    Alvarez, Victor
    Demaine, Erik D.
    Fekete, Sandor P.
    Gour, Aman
    Hesterberg, Adam
    Keldenich, Phillip
    Scheffer, Christian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2675 - 2702
  • [27] Conflict-free colouring of graphs
    1600, Cambridge University Press (23):
  • [28] Conflict-free colouring of graphs
    1600, Cambridge University Press (23):
  • [29] Conflict-Free Colouring of Graphs
    Glebov, Roman
    Szabo, Tibor
    Tardos, Gabor
    COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (03): : 434 - 448
  • [30] Conflict-free chromatic number versus conflict-free chromatic index
    Debski, Michal
    Przybylo, Jakub
    JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 349 - 358