Structure-function relationships of temporins, small antimicrobialpeptides from amphibian skin

被引:155
|
作者
Mangoni, ML
Rinaldi, AC
Di Giulio, A
Mignogna, G
Bozzi, A
Barra, D
Simmaco, M
机构
[1] Univ La Sapienza, Dipartimento Sci Biomed A Rossi Fanelli, I-00185 Rome, Italy
[2] Univ La Sapienza, CNR, Ctr Biol Mol, I-00185 Rome, Italy
[3] Univ Aquila, Dipartimento Sci & Tecnol Biomed, I-67100 Laquila, Italy
[4] Univ Cagliari, Dipartimento Sci Med Internist, Monserrato, Italy
[5] Univ G DAnnunzio, Dipartimento Sci Biomed, Chieti, Italy
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2000年 / 267卷 / 05期
关键词
D O I
10.1046/j.1432-1327.2000.01143.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Temporins, antimicrobial peptides of 10-13 residues, were isolated from secretions of Rana temporaria [Simmaco, M., Mignogna, G., Canofeni, S., Miele, R., Mangoni, M.L. & Barra, D. (1996) Eur. J. Biochem. 242, 788-792]. These molecules are specific to this amphibian species, which is also able to secrete on its skin other antimicrobial peptides similar to those found in different Rana species. The effect of temporins A, B and D (13 residues, net charge +2), and H (10 residues, net charge +1 and +2, respectively) against both artificial membranes of differing lipid composition and bacteria has been investigated in order to gain insight into their mechanisms of action. The results indicate that: the lytic activity of temporins is not greatly affected by the membrane composition; temporins A and B allow the leakage of large-size molecules from the bacterial cells; temporin H renders both the outer and inner membrane of bacteria permeable to hydrophobic substances of low molecular mass; and temporin D, although devoid of antibacterial activity, has a cytotoxic effect on erythrocytes. The results allow important conclusions to be drawn about the minimal structural requirements for lytic efficiency and specificity of temporins.
引用
收藏
页码:1447 / 1454
页数:8
相关论文
共 50 条
  • [31] Structure-function relationships of the sinoatrial node
    Dobrzynski, H
    Zhang, HG
    Wright, SE
    Holden, AV
    Boyett, MR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (12): : 3621 - 3629
  • [32] Structure-Function Relationships in Protein Complexes
    Kundrotas, Petras
    Belkin, Saveliy
    Vakser, Ilya
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 46A - 46A
  • [33] STRUCTURE-FUNCTION RELATIONSHIPS OF ADRENOCORTICOTROPIN AND MELANOTROPINS
    RAMACHAN.J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1971, (MAR-A): : 11 - &
  • [34] Establishing structure-function relationships for eumelanin
    Nofsinger, JB
    Weinert, EE
    Simon, JD
    BIOPOLYMERS, 2002, 67 (4-5) : 302 - 305
  • [35] Thermozymes: biotechnology and structure-function relationships
    Zeikus, JG
    Vieille, C
    Savchenko, A
    EXTREMOPHILES, 1998, 2 (03) : 179 - 183
  • [36] Structure-function relationships of glutamine synthetases
    Eisenberg, D
    Gill, HS
    Pfluegl, GMU
    Rotstein, SH
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2000, 1477 (1-2): : 122 - 145
  • [37] Structure-function relationships of calcium antagonists
    Rojstaczer, N
    Triggle, DJ
    BIOCHEMICAL PHARMACOLOGY, 1996, 51 (02) : 141 - 150
  • [38] Structure-function relationships in the mineralocorticoid receptor
    Pippal, Jyotsna B.
    Fuller, Peter J.
    JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2008, 41 (5-6) : 405 - 413
  • [39] Structure-function relationships in dystrophin and utrophin
    Winder, SJ
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1996, 24 (02) : 497 - 501
  • [40] Structure-function relationships in telomerase genes
    Sykorova, Eva
    Fajkus, Jiri
    BIOLOGY OF THE CELL, 2009, 101 (07) : 375 - 392