Learning in the presence of concept drift and hidden contexts

被引:425
|
作者
Widmer, G
Kubat, M
机构
[1] AUSTRIAN RES INST ARTIFICIAL INTELLIGENCE, A-1010 VIENNA, AUSTRIA
[2] UNIV OTTAWA, DEPT COMP SCI, OTTAWA, ON K1N 6N5, CANADA
关键词
incremental concept learning; on-line learning; context dependence; concept drift; forgetting;
D O I
10.1007/BF00116900
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
On-line learning in domains where the target concept depends on some hidden context poses serious problems. A changing context can induce changes in the target concepts, producing what is known as concept drift. We describe a family of learning algorithms that flexibly react to concept drift and I:an take advantage of situations where contexts reappear. The general approach underlying all these algorithms consists of (1) keeping only a window of currently trusted examples and hypotheses; (2) storing concept descriptions and reusing them when a previous context re-appears: and (3) controlling both of these functions by a heuristic that constantly monitors the system's behavior. The paper reports on experiments that test the systems' performance under various conditions such as different levels of noise and different extent and rate of concept drift.
引用
收藏
页码:69 / 101
页数:33
相关论文
共 50 条
  • [31] Anensemble method for data stream classification in the presence of concept drift
    Abbaszadeh, Omid
    Amiri, Ali
    Khanteymoori, Ali Reza
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2015, 16 (12) : 1059 - 1068
  • [32] An ensemble method for data stream classification in the presence of concept drift
    Omid ABBASZADEH
    Ali AMIRI
    Ali Reza KHANTEYMOORI
    FrontiersofInformationTechnology&ElectronicEngineering, 2015, 16 (12) : 1059 - 1068
  • [33] Classification of customer call data in the presence of concept drift and noise
    Black, M
    Hickey, R
    SOFT-WARE 2002: COMPUTING IN AN IMPERFECT WORLD, 2002, 2311 : 74 - 87
  • [34] An Active Learning Method for Data Streams with Concept Drift
    Park, Cheong Hee
    Kang, Youngsoon
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 746 - 752
  • [35] On the Change of Decision Boundary and Loss in Learning with Concept Drift
    Hinder, Fabian
    Vaquet, Valerie
    Brinkrolf, Johannes
    Hammer, Barbara
    ADVANCES IN INTELLIGENT DATA ANALYSIS XXI, IDA 2023, 2023, 13876 : 182 - 194
  • [36] Detection of Concept Drift for Learning from Stream Data
    Lee, Jeonghoon
    Magoules, Frederic
    2012 IEEE 14TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2012 IEEE 9TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (HPCC-ICESS), 2012, : 241 - 245
  • [37] Concept Drift Based on Subspace Learning for Intrusion Detection
    Wu, Bin
    Lin, Hai-Zhuo
    Feng, Lin
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND INFORMATION SYSTEMS, 2016, 52 : 421 - 425
  • [38] Concept drift detection and adaptation for federated and continual learning
    Casado, Fernando E.
    Lema, Dylan
    Criado, Marcos F.
    Iglesias, Roberto
    Regueiro, Carlos, V
    Barro, Senen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (03) : 3397 - 3419
  • [39] Concept drift detection and accelerated convergence of online learning
    Husheng Guo
    Hai Li
    Ni Sun
    Qiaoyan Ren
    Aijuan Zhang
    Wenjian Wang
    Knowledge and Information Systems, 2023, 65 : 1005 - 1043
  • [40] Adaptive Learning for Concept Drift in Application Performance Modeling
    Madireddy, Sandeep
    Balaprakash, Prasanna
    Carns, Philip
    Latham, Robert
    Lockwood, Glenn K.
    Ross, Robert
    Snyder, Shane
    Wild, Stefan M.
    PROCEEDINGS OF THE 48TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP 2019), 2019,