Vorticity generation at second order in cosmological perturbation theory

被引:40
|
作者
Christopherson, Adam J. [1 ]
Malik, Karim A. [1 ]
Matravers, David R. [2 ]
机构
[1] Queen Mary Univ London, Astron Unit, Sch Math Sci, London E1 4NS, England
[2] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 12期
关键词
DENSITY PERTURBATIONS; MAGNETIC-FIELDS;
D O I
10.1103/PhysRevD.79.123523
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that at second order in cosmological perturbation theory vorticity generation is sourced by entropy gradients. This is an extension of Crocco's theorem to a cosmological setting.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Second-order perturbation theory with the contact interaction
    Power, J. D.
    Pitzer, R. M.
    CHEMICAL PHYSICS LETTERS, 1971, 8 (06) : 615 - 621
  • [22] SECOND-ORDER SOLUTIONS OF COSMOLOGICAL PERTURBATION IN THE MATTER-DOMINATED ERA
    Hwang, Jai-chan
    Noh, Hyerim
    Gong, Jinn-Ouk
    ASTROPHYSICAL JOURNAL, 2012, 752 (01):
  • [23] Duality in cosmological perturbation theory
    Brustein, R
    Gasperini, M
    Veneziano, G
    PHYSICS LETTERS B, 1998, 431 (3-4) : 277 - 285
  • [24] Hamiltonian cosmological perturbation theory
    Barbashov, BM
    Pervushin, VN
    Zakharov, AF
    Zinchuk, VA
    PHYSICS LETTERS B, 2006, 633 (4-5) : 458 - 462
  • [25] Counterterms in cosmological perturbation theory
    Goswami, Gaurav
    PHYSICAL REVIEW D, 2014, 89 (02):
  • [26] Linearization with cosmological perturbation theory
    Kitaura, Francisco-Shu
    Angulo, Raul E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (04) : 2443 - 2454
  • [27] Renormalized cosmological perturbation theory
    Crocce, M
    Scoccimarro, R
    PHYSICAL REVIEW D, 2006, 73 (06)
  • [28] COSMOLOGICAL SINGULARITIES IN A THEORY OF GRAVITATION WITH SECOND-ORDER PERTURBATIONS
    GIESSWEIN, M
    STREERUWITZ, E
    ACTA PHYSICA AUSTRIACA, 1975, 41 (01): : 41 - 64
  • [29] Remarks on the theory of cosmological perturbation
    Lin, WB
    CHINESE PHYSICS LETTERS, 2001, 18 (11) : 1539 - 1542
  • [30] Cosmological perturbation theory revisited
    Uggla, Claes
    Wainwright, John
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (17)