Improving surface plasmon resonance sensor performance using critical angle compensation

被引:7
|
作者
Chinowsky, TM [1 ]
Strong, A [1 ]
Bartholomew, DU [1 ]
Jorgensen-Soelberg, S [1 ]
Notides, T [1 ]
Furlong, CE [1 ]
Yee, SS [1 ]
机构
[1] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
来源
CHEMICAL MICROSENSORS AND APPLICATIONS II | 1999年 / 3857卷
关键词
surface plasmon resonance; critical angle refractometry; temperature compensation;
D O I
10.1117/12.370277
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The sensing range of surface plasmon resonance (SPR) refractometry is greater than the thickness of most thin films of interest. Therefore, an SPR sensor will also respond to changes in the refractive index (RI) of the bulk analyte adjacent to the thin film, caused for instance by variations in analyte composition or temperature. These changes in bulk RI degrade the quality of SPR sensing data. One solution to this problem is simultaneously to measure both the SPR response and the bulk RI of the analyte and correct the SPR response for bulk RI variations. We present a simple implementation of this approach which uses critical angle refractometrp. Our sensor is based on Texas Instrunents' Spreeta(R) SPR sensor. The gold is removed from the portion of the sensor surface which corresponds to angles less than the critical angle. The modified sensor delivers a composite spectrum which may be used for measurements of both the critical angle edge and the SPR dip. Theory of critical angle compensation is presented, and calibration and data analysis issues are outlined. Critical angle compensation for temperature and concentration induced bulk RI changes is demonstrated in detergent adsorption and antibody binding experiments.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
  • [21] Surface plasmon resonance hydrogen sensor using an optical fibre
    Bévenot, X
    Trouillet, A
    Veillas, C
    Gagnaire, H
    Clément, M
    14TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, 2000, 4185 : 388 - 391
  • [22] Detection of cholera cells using surface plasmon resonance sensor
    Choi, K
    Youn, HJ
    Ha, YC
    Kim, KJ
    Choi, JD
    JOURNAL OF MICROBIOLOGY, 1998, 36 (01) : 43 - 48
  • [23] Detection of arsenic in groundwater using a surface plasmon resonance sensor
    Forzani, Erica S.
    Foley, Kyle
    Westerhoff, Paul
    Tao, Nongjian
    SENSORS AND ACTUATORS B-CHEMICAL, 2007, 123 (01) : 82 - 88
  • [24] Surface Plasmon Resonance Fiber Sensor for Trace Ferric Ion Detection With Temperature Compensation
    Fu, Rao
    Yan, Xin
    Li, Haihui
    Chen, Xiaobing
    Qu, Yuhan
    Yin, Zhiyuan
    Cheng, Tonglei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [25] Studies on surface plasmon resonance sensor
    Zhao, XJ
    Wang, Z
    Xu, HY
    Liang, F
    Zhang, HQ
    Jin, QH
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1998, 19 (08): : 1214 - 1218
  • [26] Simulation of Surface Plasmon Resonance Sensor
    Hong, Ley Hood
    Yahaya, Asiah
    Munajat, Yusof
    PHYSICS AND MATERIALS SYMPOSIUM: INTERNATIONAL CONFERENCE ON APPLIED SCIENCES AND INDUSTRIAL TECHNOLOGY (ICASIT2015), 2015, 1674
  • [27] A differential surface plasmon resonance sensor
    Graham, David J. L.
    Watkins, Lionel R.
    SENSORS AND ACTUATORS B-CHEMICAL, 2011, 159 (01) : 33 - 38
  • [28] High-performance differential surface plasmon resonance sensor using quadrant cell photodetector
    Zhang, HQ
    Boussaad, S
    Tao, NJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (01): : 150 - 153
  • [29] Influence of Optical Fiber Diameters on the Performance of Surface Plasmon Resonance Sensor
    Mossa, Tammara Jamal
    Hammod, Haider Y.
    BAGHDAD SCIENCE JOURNAL, 2022, 19 (06) : 1544 - 1550
  • [30] Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor
    Chinowsky, TM
    Quinn, JG
    Bartholomew, DU
    Kaiser, R
    Elkind, JL
    SENSORS AND ACTUATORS B-CHEMICAL, 2003, 91 (1-3) : 266 - 274