Sample-path optimality and variance-minimization of average cost Markov control processes

被引:47
|
作者
Hernández-Lerma, O
Vega-Amaya, O
Carrasco, G
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Matemat, Mexico City 07000, DF, Mexico
[2] Sonoma State Univ, Dept Matemat, Hermosillo, Sonora, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ciencia, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
(discrete-time) Markov control processes; average cost criteria; sample-path average cost; expected average cost; canonical policies; average variance;
D O I
10.1137/S0363012998340673
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies several average-cost criteria for Markov control processes on Borel spaces with possibly unbounded costs. Under suitable hypotheses we show (i) the existence of a sample-path average cost (SPAC-) optimal stationary policy; (ii) a stationary policy is SPAC-optimal if and only if it is expected average cost (EAC-) optimal; and (iii) within the class of stationary SPAC-optimal (equivalently, EAC-optimal) policies there exists one with a minimal limiting average variance.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 50 条
  • [31] Variance minimization of parameterized Markov decision processes
    Xia, Li
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2018, 28 (01): : 63 - 81
  • [32] Variance minimization of parameterized Markov decision processes
    Li Xia
    Discrete Event Dynamic Systems, 2018, 28 : 63 - 81
  • [33] NECESSARY OPTIMALITY CONDITIONS FOR AVERAGE COST MINIMIZATION PROBLEMS
    Bettiol, Piernicola
    Khalil, Nathalie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (05): : 2093 - 2124
  • [34] REMARKS ON THE EXISTENCE OF SOLUTIONS TO THE AVERAGE COST OPTIMALITY EQUATION IN MARKOV DECISION-PROCESSES
    FERNANDEZGAUCHERAND, E
    ARAPOSTATHIS, A
    MARCUS, SI
    SYSTEMS & CONTROL LETTERS, 1990, 15 (05) : 425 - 432
  • [35] Optimality strategy of average cost based performance potentials for Markov control process
    Zhou, Ya-Ping
    Xi, Hong-Sheng
    Yin, Bao-Quan
    Sun, De-Min
    Zidonghua Xuebao/Acta Automatica Sinica, 2002, 28 (06): : 904 - 910
  • [36] Optimality inequalities for average cost Markov decision processes and the stochastic cash balance problem
    Feinberg, Eugene A.
    Lewis, Mark E.
    MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (04) : 769 - 783
  • [37] COST VARIANCE INVESTIGATION - MARKOVIAN CONTROL OF MARKOV-PROCESSES
    DITTMAN, DA
    PRAKASH, P
    JOURNAL OF ACCOUNTING RESEARCH, 1978, 16 (01) : 14 - 25
  • [38] Constrained average cost Markov control processes in Borel spaces
    Hernández-Lerma, O
    González-Hernández, J
    López-Martínez, RR
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) : 442 - 468
  • [39] A sample-path condition for the asymptotic uniform distribution of clearing processes
    El-Taha, M
    OPTIMIZATION, 2002, 51 (06) : 965 - 975
  • [40] On Sample-Path Optimal Dynamic Scheduling for Sum-Queue Minimization in Forests
    Hariharan, Srikanth
    Shroff, Ness B.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2014, 22 (01) : 151 - 164