Ricci-flat graphs with girth at least five

被引:22
|
作者
Lin, Yong [1 ]
Lu, Linyuan [2 ]
Yau, S. -T. [3 ]
机构
[1] Renmin Univ China, Beijing 100872, Peoples R China
[2] Univ S Carolina, Columbia, SC 29208 USA
[3] Harvard Univ, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
METRIC-MEASURE-SPACES; CURVATURE; DISCRETE;
D O I
10.4310/CAG.2014.v22.n4.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Ricci-flat if its Ricci curvatures vanish on all edges. Here we use the definition of Ricci curvature on graphs given in Lin-Lu-Yau, Tohoku Math., 2011, which is a variation of Ollivier, J. Funct. Math., 2009. In this paper, we classified all Ricci-fiat connected graphs with girth at least five: they are the infinite path, cycle C-n (n >= 6), the dodecahedral graph, the Petersen graph and the half-dodecahedral graph. We also construct many Ricci-flat graphs with girth 3 or 4 by using the root systems of simple Lie algebras.
引用
收藏
页码:671 / 687
页数:17
相关论文
共 50 条
  • [41] Holonomy rigidity for Ricci-flat metrics
    Bernd Ammann
    Klaus Kröncke
    Hartmut Weiss
    Frederik Witt
    Mathematische Zeitschrift, 2019, 291 : 303 - 311
  • [42] Asymptotically cylindrical Ricci-flat manifolds
    Salur, Sema
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) : 3049 - 3056
  • [43] ON A CLASS OF RICCI-FLAT DOUGLAS METRICS
    Sevim, Esra Sengelen
    Shen, Zhongmin
    Zhao, Lili
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (06)
  • [44] A new incomplete Ricci-flat metric
    Malkovich, E. G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (05)
  • [45] A class of Ricci-flat Finsler metrics
    Ulgen, Semail
    Sevim, Esra S.
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 73 - 83
  • [46] Optimal coordinates for Ricci-flat conifolds
    Kroncke, Klaus
    Szabo, Aron
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [47] Holonomy rigidity for Ricci-flat metrics
    Ammann, Bernd
    Kroencke, Klaus
    Weiss, Hartmut
    Witt, Frederik
    MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (1-2) : 303 - 311
  • [48] Ricci-flat and Einstein pseudoriemannian nilmanifolds
    Conti, Diego
    Rossi, Federico A.
    COMPLEX MANIFOLDS, 2019, 6 (01): : 170 - 193
  • [49] Holomorphic Deformations of the Ricci-flat ?-manifolds
    Hai Sheng LIU
    ActaMathematicaSinica, 2016, 32 (06) : 643 - 658
  • [50] The Stability Inequality for Ricci-Flat Cones
    Hall, Stuart
    Haslhofer, Robert
    Siepmann, Michael
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 472 - 494