Ricci-flat graphs with girth at least five

被引:22
|
作者
Lin, Yong [1 ]
Lu, Linyuan [2 ]
Yau, S. -T. [3 ]
机构
[1] Renmin Univ China, Beijing 100872, Peoples R China
[2] Univ S Carolina, Columbia, SC 29208 USA
[3] Harvard Univ, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
METRIC-MEASURE-SPACES; CURVATURE; DISCRETE;
D O I
10.4310/CAG.2014.v22.n4.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Ricci-flat if its Ricci curvatures vanish on all edges. Here we use the definition of Ricci curvature on graphs given in Lin-Lu-Yau, Tohoku Math., 2011, which is a variation of Ollivier, J. Funct. Math., 2009. In this paper, we classified all Ricci-fiat connected graphs with girth at least five: they are the infinite path, cycle C-n (n >= 6), the dodecahedral graph, the Petersen graph and the half-dodecahedral graph. We also construct many Ricci-flat graphs with girth 3 or 4 by using the root systems of simple Lie algebras.
引用
收藏
页码:671 / 687
页数:17
相关论文
共 50 条
  • [1] Ricci-flat cubic graphs with girth five
    Cushing, David
    Kangaslampi, Riikka
    Lin, Yong
    Liu, Shiping
    Lu, Linyuan
    Yau, Shing-tung
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (07) : 1559 - 1570
  • [2] Ricci-flat graphs with girth at least five (vol 22, pg 671, 2014)
    Cushing, David
    Kangaslampi, Riikka
    Lin, Yong
    Liu, Shiping
    Lu, Linyuan
    Yau, Shing-tung
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (08) : 1775 - 1781
  • [3] Ricci-flat Graphs with Girth Four
    He, Wei Hua
    Luo, Jun
    Yang, Chao
    Yuan, Wei
    Zhang, Hui Chun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (11) : 1679 - 1691
  • [4] Ricci-flat Graphs with Girth Four
    Wei Hua He
    Jun Luo
    Chao Yang
    Wei Yuan
    Hui Chun Zhang
    Acta Mathematica Sinica, English Series, 2021, 37 : 1679 - 1691
  • [5] Ricci-flat Graphs with Girth Four
    Wei Hua HE
    Jun LUO
    Chao YANG
    Wei YUAN
    Hui Chun ZHANG
    ActaMathematicaSinica,EnglishSeries, 2021, (11) : 1679 - 1691
  • [6] Classification of α-Ricci flat graphs with girth at least five
    Cho, Hee Je
    Paeng, Seong-Hun
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2894 - 2902
  • [7] Ricci-flat 5-regular graphs
    Lei, Heidi
    Bai, Shuliang
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (06) : 2511 - 2535
  • [8] Ricci-flat and charged wormholes in five dimensions
    Lue, H.
    Mei, Jianwei
    PHYSICS LETTERS B, 2008, 666 (05) : 511 - 516
  • [9] On circle graphs with girth at least five
    Esperet, Louis
    Ochem, Pascal
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2217 - 2222
  • [10] RICCI-FLAT GRAPHS WITH MAXIMUM DEGREE AT MOST 4
    Bai, Shuliang
    Lu, Linyuan
    Yau, Shing-Tung
    ASIAN JOURNAL OF MATHEMATICS, 2021, 25 (06) : 757 - 814