Stochastic Resonance in Neuronal Network Motifs with Ornstein-Uhlenbeck Colored Noise

被引:4
|
作者
Lou, Xuyang [1 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
COHERENCE;
D O I
10.1155/2014/902395
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider here the effect of the Ornstein-Uhlenbeck colored noise on the stochastic resonance of the feed-forward-loop (FFL) network motif. The FFL motif is modeled through the FitzHugh-Nagumo neuron model as well as the chemical coupling. Our results show that the noise intensity and the correlation time of the noise process serve as the control parameters, which have great impacts on the stochastic dynamics of the FFL motif. We find that, with a proper choice of noise intensities and the correlation time of the noise process, the signal-to-noise ratio (SNR) can display more than one peak.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications
    Ascione, Giacomo
    Mishura, Yuliya
    Pirozzi, Enrica
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2021, 23 (01) : 53 - 84
  • [32] Dynamic properties for a stochastic SEIR model with Ornstein-Uhlenbeck process
    Lu, Chun
    Xu, Chuanlong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 216 (288-300) : 288 - 300
  • [33] Estimation of stochastic volatility by using Ornstein-Uhlenbeck type models
    Mariani, Maria C.
    Bhuiyan, Md Al Masum
    Tweneboah, Osei K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 : 167 - 176
  • [34] Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications
    Giacomo Ascione
    Yuliya Mishura
    Enrica Pirozzi
    Methodology and Computing in Applied Probability, 2021, 23 : 53 - 84
  • [35] Polynomials under Ornstein-Uhlenbeck noise and an application to inference in stochastic Hodgkin-Huxley systems
    Hoepfner, Reinhard
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (01) : 35 - 59
  • [36] Calibrating the exponential Ornstein-Uhlenbeck multiscale stochastic volatility model
    Dubarry, Cyrille
    Douc, Randal
    QUANTITATIVE FINANCE, 2014, 14 (03) : 443 - 456
  • [37] Exact simulation of the Ornstein-Uhlenbeck driven stochastic volatility model
    Li, Chenxu
    Wu, Linjia
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 275 (02) : 768 - 779
  • [38] A Hierarchical Ornstein-Uhlenbeck Model for Stochastic Time Series Analysis
    Laitinen, Ville
    Lahti, Leo
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 188 - 199
  • [39] Dynamical behavior of a stochastic dengue model with Ornstein-Uhlenbeck process
    Liu, Qun
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (09)
  • [40] Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise
    Carter, Simon
    Mujica-Parodi, Lilianne R.
    Strey, Helmut H.
    PHYSICAL REVIEW E, 2024, 110 (04)