DLUNet: Semi-supervised Learning Based Dual-Light UNet for Multi-organ Segmentation

被引:2
|
作者
Lai, Haoran [1 ]
Wang, Tao [1 ]
Zhou, Shuoling [1 ]
机构
[1] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Peoples R China
关键词
Semi-supervised learning; UNet; Robust segmentation loss;
D O I
10.1007/978-3-031-23911-3_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The manual ground truth of abdominal multi-organ is laborintensive. In order to make full use of CT data, we developed a semisupervised learning based dual-light UNet. In the training phase, it consists of two light UNets, which make full use of label and unlabeled data simultaneously by using consistent-based learning. Moreover, separable convolution and residual concatenation was introduced light UNet to reduce the computational cost. Further, a robust segmentation loss was applied to improve the performance. In the inference phase, only a light UNet is used, which required low time cost and less GPU memory utilization. The average DSC of this method in the validation set is 0.8718. The code is available in https://github.com/laihaoran/Semi-SupervisednnUNet.
引用
收藏
页码:64 / 73
页数:10
相关论文
共 50 条
  • [21] Supervised and Semi-supervised Methods for Abdominal Organ Segmentation: A Review
    Isaac Baffour Senkyire
    Zhe Liu
    International Journal of Automation and Computing, 2021, (06) : 887 - 914
  • [22] Reciprocal Learning for Semi-supervised Segmentation
    Zeng, Xiangyun
    Huang, Rian
    Zhong, Yuming
    Sun, Dong
    Han, Chu
    Lin, Di
    Ni, Dong
    Wang, Yi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 352 - 361
  • [23] Liver Segmentation with Semi-Supervised Learning
    Gao, Yonghui
    Li, Xiaoxiao
    Liu, Jingjing
    PROCEEDINGS OF THE 2015 4TH NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING ( NCEECE 2015), 2016, 47 : 312 - 319
  • [24] Supervised and Semi-supervised Methods for Abdominal Organ Segmentation: A Review
    Senkyire, Isaac Baffour
    Liu, Zhe
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2021, 18 (06) : 887 - 914
  • [25] Supervised and Semi-supervised Methods for Abdominal Organ Segmentation: A Review
    Isaac Baffour Senkyire
    Zhe Liu
    International Journal of Automation and Computing, 2021, 18 : 887 - 914
  • [26] Semi-Supervised 3D Abdominal Multi-Organ Segmentation via Deep Multi-Planar Co-Training
    Zhou, Yuyin
    Wang, Yan
    Tang, Peng
    Bai, Song
    Shen, Wei
    Fishman, Elliot K.
    Yuille, Alan
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 121 - 140
  • [27] Dual Learning-Based Safe Semi-Supervised Learning
    Gan, Haitao
    Li, Zhenhua
    Fan, Yingle
    Luo, Zhizeng
    IEEE ACCESS, 2018, 6 : 2615 - 2621
  • [28] Dual Relation Semi-Supervised Multi-Label Learning
    Wang, Lichen
    Liu, Yunyu
    Qin, Can
    Sun, Gan
    Fu, Yun
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6227 - 6234
  • [29] SeMA-UNet: A Semi-Supervised Learning with Multimodal Approach of UNet for Effective Segmentation of Key Components in Railway Images
    Kim, Beomjun
    Kim, Inki
    Kim, Namjung
    Park, Changjoon
    Oh, Ryumduck
    Gwak, Jeonghwan
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (05) : 3317 - 3330
  • [30] Semi-Supervised Modified-UNet for Lung Infection Image Segmentation
    Upadhyay, Ashwini Kumar
    Bhandari, Ashish Kumar
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (06) : 638 - 649