CITE: A Corpus of Image-Text Discourse Relations

被引:0
|
作者
Alikhani, Malihe [1 ]
Chowdhury, Sreyasi Nag [2 ]
De Melo, Gerard [1 ]
Stone, Matthew [1 ]
机构
[1] Rutgers State Univ, Comp Sci, Piscataway, NJ 08854 USA
[2] Max Planck Inst Informat, Saarbrucken, Germany
关键词
KAPPA; AGREEMENT; COHERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel crowd-sourced resource for multimodal discourse: our resource characterizes inferences in image-text contexts in the domain of cooking recipes in the form of coherence relations. Like previous corpora annotating discourse structure between text arguments, such as the Penn Discourse Treebank, our new corpus aids in establishing a better understanding of natural communication and common-sense reasoning, while our findings have implications for a wide range of applications, such as understanding and generation of multimodal documents.
引用
收藏
页码:570 / 575
页数:6
相关论文
共 50 条
  • [21] Conditional Image-Text Embedding Networks
    Plummer, Bryan A.
    Kordas, Paige
    Kiapour, M. Hadi
    Zheng, Shuai
    Piramuthu, Robinson
    Lazebnik, Svetlana
    COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 258 - 274
  • [22] Alignment of Image-Text and Video-Text Datasets
    Ozkose, Yunus Emre
    Gokce, Zeynep
    Duygulu, Pinar
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [23] Capturing Image-Text Modal Relations in Mobile Instant Messaging Through WhatsApp Diaries
    Apte, Deepti Singh
    Upadhyay, Ashwani Kumar
    JOURNAL OF CREATIVE COMMUNICATIONS, 2023,
  • [24] Compositional Learning of Image-Text Query for Image Retrieval
    Anwaar, Muhammad Umer
    Labintcev, Egor
    Kleinsteuber, Martin
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1139 - 1148
  • [25] Text-to-Image Generation Method Based on Image-Text Semantic Consistency
    Xue Z.
    Xu Z.
    Lang C.
    Feng S.
    Wang T.
    Li Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (09): : 2180 - 2190
  • [26] Giving Text More Imagination Space for Image-text Matching
    Dong, Xinfeng
    Han, Longfei
    Zhang, Dingwen
    Liu, Li
    Han, Junwei
    Zhang, Huaxiang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6359 - 6368
  • [27] Trust the text: language, corpus and discourse
    Liu, Jingzhong
    AUSTRALIAN REVIEW OF APPLIED LINGUISTICS, 2005, 28 (01) : 109 - 112
  • [28] Kernel triplet loss for image-text retrieval
    Pan, Zhengxin
    Wu, Fangyu
    Zhang, Bailing
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2022, 33 (3-4)
  • [29] Reservoir Computing Transformer for Image-Text Retrieval
    Li, Wenrui
    Ma, Zhengyu
    Deng, Liang-Jian
    Wang, Penghong
    Shi, Jinqiao
    Fan, Xiaopeng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5605 - 5613
  • [30] Similarity Reasoning and Filtration for Image-Text Matching
    Diao, Haiwen
    Zhang, Ying
    Ma, Lin
    Lu, Huchuan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1218 - 1226