Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property

被引:3
|
作者
Chang, Xiangke [1 ,2 ]
He, Yi [3 ]
Hu, Xingbiao [1 ,2 ]
Li, Shihao [1 ,2 ]
Tam, Hon-wah [4 ]
Zhang, Yingnan [5 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
[4] Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
[5] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
integrable system; skew orthogonal polynomial; convergence acceleration algorithm; Laurent property; DISCRETE INTEGRABLE SYSTEMS; LOTKA-VOLTERRA SYSTEM; RANDOM-MATRIX THEORY; SHANKS TRANSFORMATION; EPSILON-ALGORITHM; TODA CHAIN; ALGEBRAS;
D O I
10.1007/s11425-016-9072-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the coupled modified KdV equations possess rich mathematical structures and some remarkable properties. The connections between the system and skew orthogonal polynomials, convergence acceleration algorithms and Laurent property are discussed in detail.
引用
收藏
页码:1063 / 1078
页数:16
相关论文
共 48 条