On Some Arithmetical Properties of the Genocchi Numbers and Polynomials

被引:11
|
作者
Park, Kyoung Ho [2 ]
Kim, Young-Hee [1 ]
机构
[1] Kwangwoon Univ, Div Gen Educ Math, Seoul 139701, South Korea
[2] Kyungpook Natl Univ, Dept Math, Taegu 702701, South Korea
关键词
D O I
10.1155/2008/195049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the properties of the Genocchi functions and the Genocchi polynomials. We obtain the Fourier transform on the Genocchi function. We have the generating function of (h,q)-Genocchi polynomials. We define the Cangul-Ozden-Simsek's type twisted (h,q)-Genocchi polynomials and numbers. We also have the generalized twisted (h,q)-Genocchi numbers attached to the Dirichlet's character chi. Finally, we define zeta functions related to (h,q)-Genocchi polynomials and have the generating function of the generalized (h,q)-Genocchi numbers attached to chi. Copyright (C) 2008 K. H. Park and Y.-H. Kim.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Novel Identities for q-Genocchi Numbers and Polynomials
    Araci, Serkan
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [42] ON THE lambda-GENOCCHI POLYNOMIALS AND NUMBERS OF SECOND KIND
    Kwon, J. H.
    Lee, H. Y.
    Ryoo, C. S.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 35 (01): : 25 - 34
  • [43] ON THE SYMMETRIC PROPERTIES FOR THE GENERALIZED GENOCCHI POLYNOMIALS
    Rim, Seog-Hoon
    Moon, Eun-Jung
    Jin, Jeong-Hee
    Lee, Sun-Jung
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (07) : 1240 - 1245
  • [44] q-BERNSTEIN POLYNOMIALS ASSOCIATED WITH q-GENOCCHI NUMBERS AND POLYNOMIALS
    Rim, Seog-Hoon
    Jeong, Joo-Hee
    Lee, Sun-Jung
    Jin, Jeong-Hee
    Moon, Eun-Jung
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (06) : 1006 - 1013
  • [45] Unification of Generating Function of the Bernoulli, Euler and Genocchi Numbers and Polynomials
    Ozden, Hacer
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1125 - 1128
  • [46] SOME FORMULAE OF GENOCCHI POLYNOMIALS OF HIGHER ORDER
    Corcino, Cristina B.
    Canete, Joy Ann A.
    Corcino, Roberto B.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2020, 11 (03): : 10 - 20
  • [47] On the new type of degenerate poly-Genocchi numbers and polynomials
    Lee, Dae Sik
    Kim, Hye Kyung
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [48] A new generalization of the Genocchi numbers and its consequence on the Bernoulli polynomials
    Farhi, Bakir
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2022, 13 (04) : 18 - 28
  • [49] ANALYTIC CONTINUATION OF WEIGHTED q-GENOCCHI NUMBERS AND POLYNOMIALS
    Araci, Serkan
    Acikgoz, Mehmet
    Gursul, Aynur
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03): : 457 - 462
  • [50] A Note on (h, q)-Genocchi Polynomials and Numbers of Higher Order
    Jang, Lee-Chae
    Hwang, Kyung-Won
    Kim, Young-Hee
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,