SOLUTIONS WITH LARGE NUMBER OF PEAKS FOR THE SUPERCRITICAL HENON EQUATION
被引:21
|
作者:
Liu, Zhongyuan
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R ChinaHenan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
Liu, Zhongyuan
[1
]
Peng, Shuangjie
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Hubei Key Lab Math Phys, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R ChinaHenan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
Peng, Shuangjie
[2
]
机构:
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Phys, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
This paper is concerned with the Henon equation {-Delta u = vertical bar y vertical bar(alpha) u(p+epsilon), u > 0, in B-1(0), u = 0 on partial derivative B-1(0), where B-1(0) is the unit ball in R-N (N >= 4), p = (N + 2)/(N - 2) is the critical Sobolev exponent, alpha > 0 and epsilon > 0. We show that if epsilon is small enough, this problem has a positive peak solution which presents a new phenomenon: the number of its peaks varies with the parameter epsilon at the order epsilon(-1/(N - 1)) when epsilon -> 0(+). Moreover, all peaks of the solutions approach the boundary of B-1(0) as epsilon goes to 0(+).
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan