Optimization of thermal energy storage integration strategies for peak power production by concentrating solar power plants

被引:32
|
作者
Guedez, R. [1 ]
Spelling, J. [1 ]
Laumert, B. [1 ]
Fransson, T. [1 ]
机构
[1] KTH Royal Inst Technol, Dept Energy Technol, S-10044 Stockholm, Sweden
关键词
Concentrating Solar Power; CSP; Thermal Energy Storage; TES; peak power production; operating strategy;
D O I
10.1016/j.egypro.2014.03.173
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The integration of thermal energy storage systems in concentrating solar thermal power plants allows power production to be shifted from times where there is low demand to periods where electricity prices are higher. Although increasing the total investment, thermal energy storage can therefore enhance profitability of the solar power plant. The present study presents optimum power plant configurations for a given location considering different price-based grid integration strategies. Such optimum plant configurations were determined using a thermo-economic optimization approach to compare the profitability of generating electricity assuming an instant-dispatch strategy with respect to a selective operating strategy where electricity is produced only during peak price hours of the day. For each of these price-operating strategies, optimum plant configurations were found by varying two solar-related design parameters, namely the solar multiple and the storage size, whilst simultaneously evaluating the economic performance of each design. Results show that for the case of smaller storage units and solar field size a peaking approach will yield more revenues at the end of the project, thus highlighting the importance of the availability of reliable predictable demand and meteorological data for the plant operators. Moreover, results confirm that for the location considered, the best plant configurations encompass large storage units and solar field sizes, for which the gain of a peaking operation strategy becomes negligible since the plants start behaving similar to a baseload power generation station. Finally, it is performed a sensitivity analysis with respect to the available price data and the influence of renewable electricity incentives, particularly the investment tax credit treasury cash grant, showing the positive impact that such measurements could have in augmenting the economic viability of concentrating solar power and thus serve as a driving force for technology deployment. (C) 2013 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1642 / 1651
页数:10
相关论文
共 50 条
  • [21] Process integration of Calcium-Looping thermochemical energy storage system in concentrating solar power plants
    Ortiz, C.
    Romano, M. C.
    Valverde, J. M.
    Binotti, M.
    Chacartegui, R.
    ENERGY, 2018, 155 : 535 - 551
  • [22] Challenges in the Thermal Energy Storage for Solar Power Plants
    Wibbenmeyer, Linda
    Craig, Jim
    Smith, Tony
    NANOTECHNOLOGY 2012, VOL 3: BIO SENSORS, INSTRUMENTS, MEDICAL, ENVIRONMENT AND ENERGY, 2012, : 641 - 644
  • [23] Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage
    Stekli, Joseph
    Irwin, Levi
    Pitchumani, Ranga
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2013, 5 (02)
  • [24] Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
    Ma, Zhiwen
    Glatzmaier, Greg
    Mehos, Mark
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (03):
  • [25] Integration of Thermal Energy Storage Systems and Thermodynamic Analysis of Solar Combined Power Plants
    Al-Doori, Ghaith Thaaer Fadhil
    Abed, Falah Mohammed
    Faisal, Hayder Subhi
    INTERNATIONAL JOURNAL OF MULTIPHYSICS, 2024, 18 (03) : 1494 - 1512
  • [26] Optimization of an improved calcium-looping process for thermochemical energy storage in concentrating solar power plants
    Rodrigues, D.
    Pinheiro, C. I. C.
    Filipe, R. M.
    Mendes, L. F.
    Matos, H. A.
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [27] PERFORMANCE ANALYSIS OF A METAL HYDRIDE-THERMAL ENERGY STORAGE SYSTEM FOR CONCENTRATING SOLAR POWER PLANTS
    Alqahtani, Talal
    Mellouli, Sofiene
    Askri, Faouzi
    Phelan, Patrick E.
    4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [28] Thermal energy storage for direct steam generation concentrating solar power plants: Concept and materials selection
    Prieto, Cristina
    Cabeza, Luisa F.
    Pavon-Moreno, M. Carmen
    Palomo, Elena
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [29] Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants
    Corgnale, Claudio
    Hardy, Bruce
    Motyka, Theodore
    Zidan, Ragaiy
    Teprovich, Joseph
    Peters, Brent
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 38 : 821 - 833
  • [30] Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies
    Liu, Ming
    Tay, N. H. Steven
    Bell, Stuart
    Belusko, Martin
    Jacob, Rhys
    Will, Geoffrey
    Saman, Wasim
    Bruno, Frank
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 53 : 1411 - 1432