Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms

被引:31
|
作者
Guivarc'h, Y
Starkov, AN
机构
[1] Inst Rech Math Rennes 1, F-35042 Rennes, France
[2] All Russian Inst Elect, Istra 143500, Moscow Region, Russia
[3] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 117234, Russia
关键词
D O I
10.1017/S0143385703000440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be a finite-dimensional vector space over R and let Gamma subset of GL(V) be a semigroup. We study the closed F-invariant subsets of V - {0} under the condition that the Zariski closure of Gamma is semi-simple. We use the results to show that, if Gamma subset of SL(R-d) acts on T-d by automorphisms, then the orbits of F are finite or dense.
引用
收藏
页码:767 / 802
页数:36
相关论文
共 50 条