LapSeg3D: Weakly Supervised Semantic Segmentation of Point Clouds Representing Laparoscopic Scenes

被引:0
|
作者
Alt, Benjamin [1 ]
Kunz, Christian [2 ]
Katic, Darko [1 ]
Younis, Rayan [3 ]
Jaekel, Rainer [1 ]
Mueller-Stich, Beat Peter [3 ]
Wagner, Martin [3 ]
Mathis-Ullrich, Franziska [2 ]
机构
[1] Artiminds Robot GmbH, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Anthropomat & Robot, D-76131 Karlsruhe, Germany
[3] Heidelberg Univ Hosp, Dept Gen Visceral & Transplantat Surg, D-69120 Heidelberg, Germany
来源
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2022年
关键词
D O I
10.1109/IROS47612.2022.9981178
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The semantic segmentation of surgical scenes is a prerequisite for task automation in robot assisted interventions. We propose LapSeg3D, a novel DNN-based approach for the voxel-wise annotation of point clouds representing surgical scenes. As the manual annotation of training data is highly time consuming, we introduce a semi-autonomous clustering-based pipeline for the annotation of the gallbladder, which is used to generate segmented labels for the DNN. When evaluated against manually annotated data, LapSeg3D achieves an F1 score of 0.94 for gallbladder segmentation on various datasets of ex-vivo porcine livers. We show LapSeg3D to generalize accurately across different gallbladders and datasets recorded with different RGB-D camera systems.
引用
收藏
页码:5265 / 5270
页数:6
相关论文
共 50 条
  • [11] BSTS: A Weakly-Supervised Method for Semantic Learning of 3D Point Clouds
    Liu, Yan
    Hu, Qingyong
    Guo, Yulan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (11) : 11386 - 11399
  • [12] Semantic Segmentation Networks of 3D Point Clouds for RGB-D Indoor Scenes
    Wang, Ya
    Zell, Andreas
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [13] Few Annotated Pixels and Point Cloud Based Weakly Supervised Semantic Segmentation of Driving Scenes
    Ma, Huimin
    Yi, Sheng
    Chen, Shijie
    Chen, Jiansheng
    Wang, Yu
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, : 2096 - 2110
  • [14] Weakly-Supervised Semantic Segmentation of ALS Point Clouds Based on Auxiliary Line and Plane Point Prediction
    Chen, Jintao
    Zhang, Yan
    Ma, Feifan
    Huang, Kun
    Tan, Zhuangbin
    Qi, Yuanjie
    Li, Jing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18096 - 18111
  • [15] Weakly Supervised Adversarial Domain Adaptation for Semantic Segmentation in Urban Scenes
    Wang, Qi
    Gao, Junyu
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) : 4376 - 4386
  • [16] Semi-Supervised Semantic Segmentation Network for Point Clouds Based on 3D Shape
    Zhang, Liting
    Zhang, Kun
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [17] Superpoint-guided Semi-supervised Semantic Segmentation of 3D Point Clouds
    Deng, Shuang
    Dong, Qiulei
    Liu, Bo
    Hu, Zhanyi
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 9214 - 9220
  • [18] SEGCloud: Semantic Segmentation of 3D Point Clouds
    Tchapmi, Lyne P.
    Choy, Christopher B.
    Armeni, Iro
    Gwak, JunYoung
    Savarese, Silvio
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 537 - 547
  • [19] Weakly supervised multi-class semantic video segmentation for road scenes
    Awan, Mehwish
    Shin, Jitae
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 230
  • [20] Deep clustering for weakly-supervised semantic segmentation in autonomous driving scenes
    Wang, Xiang
    Ma, Huimin
    You, Shaodi
    NEUROCOMPUTING, 2020, 381 : 20 - 28