A REPRESENTATION THEOREM FOR MEASURABLE RELATION ALGEBRAS WITH CYCLIC GROUPS

被引:1
|
作者
Andreka, Hajnal [1 ]
Givant, Steven [2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
[2] Mills Coll, 5000 MacArthur Blvd, Oakland, CA 94613 USA
关键词
D O I
10.1090/tran/7566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A relation algebra is measurable if the identity element is a sum of atoms, and the square x; 1; x of each subidentity atom x is a sum of non-zero functional elements. These functional elements form a group Gam. We prove that a measurable relation algebra in which the groups Gx are all finite and cyclic is completely representable. A structural description of these algebras is also given.
引用
收藏
页码:7175 / 7198
页数:24
相关论文
共 50 条
  • [41] The Gelfand-Naimark Theorem for C*-Algebras Over a Ring of Measurable Functions
    Chilin, V. I.
    Ganiev, I. G.
    Kudaibergenov, K. K.
    RUSSIAN MATHEMATICS, 2008, 52 (02) : 58 - 66
  • [42] The Gelfand-Naimark theorem for C*-algebras over a ring of measurable functions
    V. I. Chilin
    I. G. Ganiev
    K. K. Kudaibergenov
    Russian Mathematics, 2008, 52 (2) : 58 - 66
  • [43] BOOLEAN CIRCULANTS, GROUPS, AND RELATION ALGEBRAS
    BRINK, C
    PRETORIUS, J
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (02): : 146 - 152
  • [44] NONREPRESENTABLE RELATION ALGEBRAS FROM GROUPS
    Andreka, Hajnal
    Nemeti, Istvan
    Givant, Steven
    REVIEW OF SYMBOLIC LOGIC, 2020, 13 (04): : 861 - 881
  • [45] A REPRESENTATION THEOREM FOR POSITIVE FUNCTIONALS ON INVOLUTION ALGEBRAS (REVISITED)
    MALTESE, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1994, 8A (03): : 431 - 438
  • [46] Triple Representation Theorem for orthocomplete homogeneous effect algebras
    Josef Niederle
    Jan Paseka
    Algebra universalis, 2012, 68 : 197 - 220
  • [47] Musings about the Triple Representation Theorem for Effect Algebras
    Niederle, Josef
    Paseka, Jan
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (02): : 527 - 539
  • [48] Stone representation theorem for Boolean algebras in the topos MSet
    Mahmoudi, Mojgan
    Sepahani, Sara
    QUAESTIONES MATHEMATICAE, 2022, 45 (12) : 1921 - 1930
  • [49] A representation theorem for quantale valued sup-algebras
    Paseka, Jan
    Slesinger, Radek
    2018 IEEE 48TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2018), 2018, : 91 - 96
  • [50] Triple Representation Theorem for orthocomplete homogeneous effect algebras
    Niederle, Josef
    Paseka, Jan
    ALGEBRA UNIVERSALIS, 2012, 68 (3-4) : 197 - 220